Here are two definitions of sorted lists. Prove that they are equivalent.
Require Export List Relations. Section Definitions. Variables (A:Type)(R: relation A). Inductive sorted : list A -> Prop := | sorted0 : sorted nil | sorted1 : forall x:A, sorted (x :: nil) | sorted2 : forall (x y:A)(l:list A), R x y -> sorted (y :: l)-> sorted (x :: y :: l). Definition sorted' (l:list A) := forall (l1 l2:list A)(n1 n2:A), l = l1 ++ (n1 :: n2 ::l2) -> R n1 n2.