ExtLib.Tactics.MonadTac
Require Import ExtLib.Structures.Monads.
Require Import ExtLib.Structures.MonadLaws.
Set Implicit Arguments.
Set Strict Implicit.
(*
Section monad.
Context {m : Type -> Type}.
Variable meq : forall T {tT : type T}, type (m T).
Variable meqOk : forall T (tT : type T), typeOk tT -> typeOk (meq tT).
Context {M : Monad m} (ML : MonadLaws M meq).
Theorem bind_rw_0 : forall A B (tA : type A) (tB : type B),
typeOk tA -> typeOk tB ->
forall (x z : m A) (y : A -> m B),
equal x z ->
proper y ->
equal (bind x y) (bind z y).
Proof.
intros. eapply bind_proper; eauto.
Qed.
Theorem bind_rw_1 : forall A B (tA : type A) (tB : type B),
typeOk tA -> typeOk tB ->
forall (x z : A -> m B) (y : m A),
(forall a b, equal a b -> equal (x a) (z b)) ->
proper y ->
equal (bind y x) (bind y z).
Proof.
intros. eapply bind_proper; eauto. solve_equal.
Qed.
End monad.
*)
Require Import ExtLib.Structures.MonadLaws.
Set Implicit Arguments.
Set Strict Implicit.
(*
Section monad.
Context {m : Type -> Type}.
Variable meq : forall T {tT : type T}, type (m T).
Variable meqOk : forall T (tT : type T), typeOk tT -> typeOk (meq tT).
Context {M : Monad m} (ML : MonadLaws M meq).
Theorem bind_rw_0 : forall A B (tA : type A) (tB : type B),
typeOk tA -> typeOk tB ->
forall (x z : m A) (y : A -> m B),
equal x z ->
proper y ->
equal (bind x y) (bind z y).
Proof.
intros. eapply bind_proper; eauto.
Qed.
Theorem bind_rw_1 : forall A B (tA : type A) (tB : type B),
typeOk tA -> typeOk tB ->
forall (x z : A -> m B) (y : m A),
(forall a b, equal a b -> equal (x a) (z b)) ->
proper y ->
equal (bind y x) (bind y z).
Proof.
intros. eapply bind_proper; eauto. solve_equal.
Qed.
End monad.
*)