
Hydras & Co.
Formalized mathematics in Coq for inspiration and

entertainement

Pierre Castéran, LaBRI, Univ. Bordeaux, CNRS UMR 5800
email: pierre dot casteran arobas gmail dot com.

With contributions by Yves Bertot, Ilmārs Cīrulis, Évelyne Contejean, Jérémy
Damour, Stéphane Desarzens, Florian Hatat, Pascal Manoury, Karl Palmskog,

Clément Pit-Claudel, and Théo Zimmermann.
The formalization of primitive recursive functions and Peano Arithmetic was

originally authored by Russel O’Connor [O’C05b].

February 19, 2024

Ordinal numbers in Veblen normal form

(Aprieta el bastón con las dos manos, se yergue un tanto, casi con
entusiasmo) ¡Caramba! Claro … los números transfinitos, Kantor …
[Jorge Luis Borges]

Nessun senso percepisce l’infinito. Nessun senso permette di con-
cludere ch’esso esista. L’infinito, in effetti, non puo’ essere l’oggetto
dei sensi.
[Giordano Bruno] De l’infinito, universo e mondi

I start from one point and go as far as possible.
[John Coltrane]

“The hydra in black and white”: Watercolor by Pierrette Cassou-Noguès

“The blue hydra”: Watercolor by Pierrette Cassou-Noguès

“The incomplete rooster hydra”: AI art generated by Karl Palmskog

Contents

1 Introduction 9
1.1 Generalities . 9
1.2 How to install the libraries . 15
1.3 Comments on exercises and projects 15
1.4 Acknowledgements . 16

I Hydras and ordinals 17

2 Hydras and hydra games 21
2.1 Hydras and their representation in Coq 25
2.2 Relational description of hydra battles 30
2.3 A long battle . 36
2.4 Generic properties . 44

3 Introduction to ordinal numbers and ordinal notations 49
3.1 The mathematical point of view 50
3.2 Ordinal numbers in Coq . 51
3.3 Ordinal Notations . 52
3.4 Example: the ordinal ω . 54
3.5 Sum of two ordinal notations . 54
3.6 Limits and successors . 56
3.7 Product of ordinal notations . 58
3.8 The ordinal ω2 . 59
3.9 A notation for finite ordinals . 65
3.10 Comparing two ordinal notations 68
3.11 Comparing an ordinal notation with Schütte’s model 69
3.12 Isomorphism of ordinal notations 70
3.13 Other ordinal notations . 71

4 The ordinal epsilon0 73
4.1 The ordinal ε0 . 73
4.2 Well-foundedness and transfinite induction 87
4.3 An ordinal notation for ωω . 91
4.4 A variant for hydra battles . 95

5

6 CONTENTS

5 The Ketonen-Solovay machinery 101
5.1 Introduction . 101
5.2 Canonical Sequences . 102
5.3 Accessibility inside ε0 : paths . 105
5.4 A proof of impossibility . 108
5.5 The case of standard battles . 111

6 Large sets and rapidly growing functions 119
6.1 Definitions . 119
6.2 Length of minimal large sequences 121
6.3 A variant of the Hardy hierarchy 129
6.4 A variant of the Wainer hierarchy (functions Fα) 136
6.5 More about rapidly growing functions 139

7 Gaia and the hydra (draft) 141
7.1 Introduction . 141
7.2 Library structure . 142
7.3 Importing Definitions and theorems from Hydra-battles 147
7.4 Rapidly growing arithmetic functions 155
7.5 Importing a theorem from Gaia 159

8 Countable ordinals (after Schütte) 161
8.1 Declarations and axioms . 162
8.2 Additional axioms . 163
8.3 The successor function . 167
8.4 Finite ordinals . 169
8.5 The definition of omega . 169
8.6 The exponential of basis ω . 174
8.7 More about ε0 . 178
8.8 Critical ordinals . 179
8.9 Cantor normal form . 180
8.10 An embedding of T1 into Ord . 182
8.11 Related work . 183

9 The Ordinal Γ0 (first draft) 185
9.1 Introduction . 185
9.2 The type T2 of ordinal terms . 186
9.3 A strict order on T2 . 187
9.4 Veblen normal form . 189
9.5 Main functions on T2 . 191
9.6 An ordinal notation for Γ0 . 193

II Ackermann, Gödel, Peano … 195

10 General presentation (draft) 197
10.1 Introduction . 197
10.2 File contents . 198
10.3 Warning . 200

CONTENTS 7

11 Primitive recursive functions 201
11.1 Introduction . 201
11.2 Mathematical definition . 201
11.3 First look at the Ackermann library 203
11.4 Abstract syntax for primitive recursive functions 203
11.5 Proving that a given Coq arithmetic function is primitive recursive211
11.6 Proofs by induction over all primitive recursive functions 219
11.7 Ackermann function is not primitive recursive 222
11.8 The length of standard hydra battles 228

12 First Order Logic (in construction) 231
12.1 Introduction . 231
12.2 Data types . 231
12.3 A notation scope for first-order terms and formulas 235
12.4 Computing and reasoning on first-order formulas 238
12.5 Proofs . 249
12.6 Concluding remarks . 256

13 Natural Deduction (in construction) 257
13.1 Contexts as sets . 257
13.2 The Deduction theorem . 259
13.3 Derived rules and natural deduction 260

14 Languages for Arithmetic (in construction) 265
14.1 Notations for Formulas (experimental) 267

15 Gödel’s Encoding (in construction) 269
15.1 Cantor pairing function . 269
15.2 First order logic and Gödel encoding 275

16 Every Primitive Recursive Function is representable 277

III A few certified algorithms 279

17 Smart computation of xn 281
17.1 Introduction . 281
17.2 Some basic implementations . 281
17.3 Representing monoids in Coq . 288
17.4 Computing powers in any EMonoid 295
17.5 Comparing exponentiation algorithms with respect to efficiency . 300
17.6 Addition chains . 302
17.7 Proving a chain’s correctness . 307
17.8 Certified chain generators . 318
17.9 Euclidean Chains . 321
17.10Projects . 343

8 CONTENTS

IV Appendices 349

18 Index and tables 359
Links to Gaia Library . 360
Coq, plug-ins and standard library . 361
Mathematical notions and algorithmics 362
Library hydras: Ordinals and hydra battles 363
Library hydras.Ackermann: Primitive recursive functions, Gödel en-

coding . 364
Library additions: Addition chains . 365

Chapter 1

Introduction

1.1 Generalities
Proof assistants are excellent tools for exploring the structure of mathematical
proofs, studying which hypotheses are really needed, and which proof patterns
are useful and/or necessary. Since the development of a theory is represented
as a bunch of computer files, everyone is able to read the proofs with an arbi-
trary level of detail, or to play with the theory by writing alternate proofs or
definitions.

If a formal development is large (at least 10 KLOCs), we believe that a
human-readable document containing explanations, diagrams, code snippets,
examples, exercises, etc.) would be useful for a better understanding of both
the mathematical contents and the formalization techniques used in the devel-
opment [CPC23].

This document has been generated with Alectryon (see Sect. 1.1.2 on the fol-
lowing page), which ensures the pdf is consistent with the last compiled version
of the Coq project.

Among all the theorems proved with the help of proof assistants like Coq [Coq,
BC04a], HOL [GM93], Isabelle [NPW02], etc., several statements and proofs
share some interesting features:

• Their statements are easy to understand, even by non-mathematicians

• Their proof requires some non-trivial mathematical tools

• Their mechanization on computer presents some methodological interest.

This is obviously the case of the four-color theorem [Gon08] and the Kepler
conjecture [HAB+17]. We do not mention impressive works like the proof of
the odd-order theorem [GAA+13], since understanding its statement requires
a quite good mathematical culture.

In this document, we present two examples which seem to have the above
properties.

• Hydra games (a.k.a. Hydra battles) appear in an article published in 1982
by two mathematicians: L. Kirby and J. Paris [KP82]: Accessible Indepen-
dence Results for Peano Arithmetic. Although the mathematical contents

9

10 CHAPTER 1. INTRODUCTION

of this paper are quite advanced, the rules of hydra battles are very easy
to understand1. There are now several sites on the Internet where you
can find tutorials on hydra games, together with simulators you can play
with. See, for instance, the blogpost and source code written by Andrej
Bauer [Bau08, Bau].
Hydra battles, as well as Goodstein sequences [Goo44, KP82] are a nice
way to present complex termination problems. The article by Kirby and
Paris presents a proof of termination based on ordinal numbers, as well
as a proof that this termination is not provable in Peano arithmetic. In
the book dedicated to J.P. Jouannaud [CLKK07], N. Dershowitz and
G. Moser give a thorough survey on this topic [DM07].
We present a (still partial, under continuous development) implementation
in Coq of the various techniques shown in Kirby & Paris’ and Ketonen &
Solovay’s [KS81] article.
Our library Gaia-hydras is dedicated to make compatible our lemmas with
José Grimm’s Gaia project (designed for SSReflect/MathComp) (please
look at Sect. I on page 19 and the paragraphs signalled with G).

• In the second part, we are interested in computing xn with the least
number of multiplications as possible. We use the notion of addition
chains [Bra39, BB87], to generate efficient certified exponentiation func-
tions.

Warning: This document is not an introductory text for Coq, and there are
many aspects of this proof assistant that are not covered. The reader should al-
ready have some basic experience with the Coq system. The Reference Manual
and several tutorials are available on the Coq website [Coq]. The first chapters of
textbooks like Interactive Theorem Proving and Program Development [BC04a],
Software Foundations [P+], Programs and Proofs [Ser14], or Certified Program-
ming with Dependent Types [Chl11] will give you the right background.

1.1.1 Structure of Hydras & Co.
Hydras & Co. is made of three main packages: Hydra-battles, Gaia-hydras, and
Addition-chains. Figure 1.1 illustrates the complex relationships: inheritance
from historical contributions to Coq, and dependency with other Coq packages.
Many thanks to Karl Palmskog and Théo Zimmermann for the CI/CD design
of Hydras & Co. and the automation of documentation maintenance. Please
look for a more detailed description in [CDP+22].

1.1.2 Documenting theories with Alectryon
Quotations of Coq source and answers are progressively replaced from copy-
pasted verbatim to automatically generated LaTeX blocks, using Clément Pit-
Claudel’s Alectryon tool [PC20, PC]. Many thanks to Jérémy Damour, Clément

1Let us underline the analogy between hydra battles and interactive theorem proving.
Hercules is the user (you!), and hydra’s heads are the subgoals: you may think that applying
a tactic would solve a subgoal, but it results often in the multiplication of such tasks.

1.1. GENERALITIES 11

GoedelPocklington Additions Cantor Categories in ZFC

Paramcoq MathCompEquations

Hydra-battlesPocklington Addition-chains Gaia

Goedel Gaia-hydras

Figure 1.1: Genealogy and dependencies for Hydras & Co. packages. Dot-
ted boxes represent historical Coq contributions, while regular boxes represent
maintained Coq packages. Orange packages are maintained in the Hydras &
Co. GitHub repository, while light blue packages are maintained in other Coq-
community repositories. Dotted lines represent Coq code ancestry, while regular
lines represent direct code dependencies.

Pit-Claudel and Théo Zimmermann who designed tools for maintaining consis-
tency between the always evolving Coq modules and documentation written in
LaTeX.

Besides the guarantee of consistency between theories and documentation,
we hope to give a corpus for experimenting new ways of documenting the im-
plementation of non-trivial mathematics on a proof assistant.

1.1.3 Trust in our proofs
Unlike mathematical literature, where definitions and proofs are spread out over
many articles and books, the whole proof is now inside your computer. It is
composed from the .v files you downloaded, parts of Coq’s standard library,
and required Coq packages (see Fig. 1.1). Thus, there is no ambiguity in our
definitions and the premises of the theorems. Furthermore, you will be able to
navigate through the development, using your favorite text editor or IDE, and
some commands like Search, Locate, etc.

1.1.4 Assumed redundancy
It may often happen that several definitions of a given concept, or several proofs
of a given theorem are possible. If all the versions present some interest, we will
make them available, since each one may be of some methodological interest (by
illustrating some tactic of proof pattern, for instance). We use Coq’s module
system to make several proofs of a given theorem co-exist in our libraries (see
also Sect 1.1.9 on page 15). After some discussions of the pros and cons of each
solution, we develop only one of them, leaving the others as exercises or projects
(i.e., big or difficult exercises). In order to discuss which assumptions are really
needed for proving a theorem, we will also present several aborted proofs. Of
course, do not hesitate to contribute nice proofs or alternative definitions!

It may also happen that some direct proof looks to be useless, because the
proven theorem is a trivial consequence of another (also proven) result. For
instance, let us consider the three following statements:

12 CHAPTER 1. INTRODUCTION

1. There is no measure into N for proving the termination of all hydra battles
(Sect 2.4.3 on page 45).

2. There is no measure into the interval 2 [0, ω2) for proving the termination
of all hydra battles (Sect. 3.8.2 on page 62).

3. There is no measure into [0, µ) for proving the termination of all hydra
battles, for any µ < ε0 (Sect.5.4.1 on page 109).

Obviously, the third theorem implies the second one, which implies the first
one. So, theoretically, a library would contain only a proof of (3) and remarks
for (2) and (1). But we found it interesting to make all the three proofs avail-
able, allowing the reader to compare their common structure and notice their
technical differences. In particular, the proof of (3) uses several non-trivial com-
binatorial properties of ordinal numbers up to ε0 [KS81], whilst (1) and (2) use
simple properties of N and N2.

1.1.5 About logic
Most of the proofs we present are constructive. Whenever possible, we provide
the user with an associated function, which she or he can apply in Gallina or
OCaml in order to get a “concrete” feeling of the meaning of the considered
theorem. For instance, in Chapter 5 on page 101, the notion of limit ordinal is
made more “concrete” thanks to a function canon which computes every item of a
sequence which converges on a given limit ordinal α. This simply typed function
allows the user/reader to make her/his own experimentations. For instance, one
can very easily compute the 42-nd item of a sequence which converges towards
ωωω .

Except in the Schutte library, dedicated to an axiomatic presentation of
the set of countable ordinal numbers, all of our development is axiom-free, and
respects the rules of intuitionistic logic. Note that we also use the Equations

plug-in [SM19] in the definition of several rapidly growing hierarchy of functions,
in Chap. 6. This plug-in imports several known-as-harmless axioms.

At any place of our development, you may use the Print Assumptions ident
command in order to verify on which axiom the theorem ident may depend. The
following example is extracted from Library hydras.Epsilon0.F_alpha, where we
use the coq-equations plug-in (see Sect. 6.4 on page 136).

Print Assumptions F_zero_eqn.

Axioms:

functional_extensionality_dep

: forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),

(forall x : A, f x = g x) -> f = g

Eqdep.Eq_rect_eq.eq_rect_eq

: forall (U : Type) (p : U) (Q : U -> Type)

(x : Q p) (h : p = p), x = eq_rect p Q x p h

2We use the notation [a, b) for denoting the set of ordinals greater or equal than a and
strictly less than b.

../theories/html/hydras.Epsilon0.F_alpha.html

1.1. GENERALITIES 13

1.1.6 Typographical Conventions
1.1.6.1 Using Alectryon

Whenever possible, we use Alectryon to display Coq code (definition, proof
scripts) and answers. Here are two examples from Chapters 11 and 17.

Fixpoint Ack (m:nat) : nat -> nat :=

match m with

| 0 => S

| n.+1 => fun k => iterate (Ack n) k.+1 1

end.

Compute Ack 3 2.

= 29

: nat

Definition fib_eucl gamma `{Hgamma: Strategy gamma} n :=

let c := make_chain gamma n

in let r := chain_apply c (M:=Mul2) (1,0) in

fst r + snd r.

Time Compute fib_eucl dicho 153.

= 68330027629092351019822533679447

: N

Finished transaction in 0.014 secs (0.014u,0.s) (successful)

Time Compute fib_eucl two 153.

= 68330027629092351019822533679447

: N

Finished transaction in 0.011 secs (0.011u,0.s) (successful)

Time Compute fib_eucl half 153.

= 68330027629092351019822533679447

: N

Finished transaction in 0.01 secs (0.007u,0.003s) (successful)

1.1.6.2 Verbatim quotations

In some situations, we replace Alectryon snippets with verbatim blocks.

• When the quoted source belongs to some library on which we do not have
the write permission, we cannot include directives for generating snippets.
For instance, the following code belongs to Coq’s standard library.

Inductive CompareSpec (Peq Plt Pgt : Prop) :

comparison -> Prop :=

CompEq : Peq -> CompareSpec Peq Plt Pgt Eq

| CompLt : Plt -> CompareSpec Peq Plt Pgt Lt

| CompGt : Pgt -> CompareSpec Peq Plt Pgt Gt.

14 CHAPTER 1. INTRODUCTION

• We use also verbatim code inclusions when the examples would lead to too
long computations during the compilation and the documentation gener-
ation.

Example C87_ok_slow : chain_correct 87 C87.

Proof.

Time slow_chain_correct_tac.

Finished transaction in 49.927 secs (49.445u,0.079s) (successful)

Qed.

1.1.7 Remark

In general, we do not include full proof scripts in this document. The only
exceptions are very short proofs (e.g., proofs by computation, or by application
of automatic tactics). Likewise, we may display only the important steps on a
long interactive proof, for instance, in the following lemma (5.5.1.1 on page 114):

Lemma Lemma2_6_1 (alpha : T1) :

nf alpha ->

forall beta, beta t1< alpha ->

{n:nat | const_path (S n) alpha beta}.

Proof.

transfinite_induction alpha.

(* ... *)

Defined.

The reader may consult the full proof scripts with Proof General or CoqIDE,
for instance.

1.1.8 Active links

The links which appear in this pdf document lead are of three possible kinds of
destination:

• Local links to the document itself,

• External links, mainly to Coq’s website,

• Local links to pages generated by coqdoc. According to the current make-
file (through the commands make html and make pdf), the pages generated
by coqdoc are stored at the relative address ../theories/html/*.html (from
the location of the pdf). Thus, active links to our Coq modules may be in-
correct if you did not get this pdf document by compiling the distribution
available at https://github.com/coq-community/hydra-battles.

https://github.com/coq-community/hydra-battles

1.2. HOW TO INSTALL THE LIBRARIES 15

1.1.9 Alternative or bad definitions
Finally, we decided to include definitions or lemma statements, as well as tactics,
that lead to dead-ends or too complex developments, with the following coloring.
Bad definitions are ”masked” inside modules called Bad, Bad1, etc.

Module Bad.

Definition bottom := the_least Empty_set.

Lemma le_zero_bottom : zero <= bottom.

Proof. apply zero_le. Qed.

Lemma bottom_eq : bottom = bottom.

Proof. trivial. Qed.

Lemma le_bottom_zero : bottom <= zero.

Proof.

unfold bottom, the_least, the; apply iota_ind.

exists ! x : Ord, least_member lt Empty_set x

forall a : Ord,

unique (least_member lt Empty_set) a -> a <= zero

Abort.

End Bad.

Likewise, alternative, but still unexplored definitions will be presented in
modules Alt, Alt1, etc. Using these definitions is left as an implicit exercise.

Module Alt.

Inductive Hydra : Set :=

| hnode (daughters : list Hydra).

End Alt.

1.2 How to install the libraries
The present distribution has been checked with versions up to 8.18 of the Coq
proof assistant, with a few plug-ins. Please refer to the README file of the
project.

1.3 Comments on exercises and projects
Although we do not plan to include complete solutions to the exercises, we think
it would be useful to include comments and hints, and questions/answers from
the users. In contrast, “projects” are supposed, once completed, to be included
in the repository.

Please consult the sub-directory exercises/ of the project (in construction).

https://github.com/coq-community/hydra-battle#readme
https://github.com/coq-community/hydra-battle#readme

16 CHAPTER 1. INTRODUCTION

1.4 Acknowledgements
Many thanks to Yves Bertot, Ilmārs Cīrulis, Évelyne Contejean, Jéremy Damour,
Stéphane Desarzens, Florian Hatat, David Ilcinkas, Pascal Manoury, Karl Palm-
skog, Clément Pit-Claudel, Sylvain Salvati, Alan Schmitt and Théo Zimmer-
mann for their help on the elaboration of this library and document, and to the
members of the Formal Methods team and the Coq working group at laBRI for
their helpful comments on oral presentations of this work.

Many thanks also to the Coq development team and the members of the
Coq Club for interesting discussions about the Coq system and the Calculus of
Inductive Constructions.

The author of the present document wishes to express his gratitude to the
late Patrick Dehornoy, whose talk was determinant for our desire to work on this
topic. I owe my interest in discrete mathematics and their relation to formal
proofs and functional programming to Srecko Brlek. Equally, there is W. H.
Burge’s book “Recursive Programming Techniques” [Bur75] which was a great
source of inspiration.

Last but not least, many thanks to Pierrette Cassou-Noguès for the water-
color on pages 2 and 3. Thanks to Karl Palmskog for his rooster hydra, page 4.

1.4.1 Contributions
Yves Bertot made nice optimizations to algorithms presented in Chapter 17.
Évelyne Contejean contributed libraries on the recursive path ordering (rpo) for
proving the well-foundedness of our representation of ε0 and Γ0. Florian Hatat
proved many useful lemmas on countable sets, which we used in our adaptation
of Schütte’s formalization of countable ordinals. Pascal Manoury is integrating
the ordinal ωω into our hierarchy of ordinal notations.

The formalization of primitive recursive functions was originally a part of
Russel O’Connor’s work on Gödel’s incompleteness theorems [O’C05b].

Any form of contribution is welcome: correction of errors (typos and more
serious mistakes), improvement of Coq scripts, proposition of inclusion of new
chapters, and generally any comment or proposition that would help us. The
text contains several projects which, when completed, may improve the present
work. Please do not hesitate to share your contributions, for instance using pull
requests and issues on GitHub. Thank you in advance!

Part I

Hydras and ordinals

17

19

Introduction
In this part, we present a development for the Coq proof assistant, after the
work of Kirby and Paris [KP82]. This formalization contains the following main
parts:

• Representation in Coq of hydras and hydra battles.

• A proof that every battle is finite and won by Hercules. This proof is
based on a variant which maps any hydra to an ordinal strictly less than
ε0 and is strictly decreasing along any battle.

• Using a combinatorial toolkit designed by J. Ketonen and R. Solovay [KS81],
we prove that, for any ordinal µ < ε0, there exists no such variant mapping
any hydra to an ordinal strictly less than µ. Thus, the complexity of ε0 is
really needed in the previous proof.

• We prove a relation between the length of a “classic” kind of battles 3 and
the Wainer-Hardy hierarchy of “rapidly growing functions” Hα [Wai70].
The considered class of battles, which we call standard, is the most con-
sidered one in the scientific literature (including popularization).

Simply put, this document tries to combine the scientific interest of two
articles [KP82, KS81] and a book [Sch77] with the playful activity of truly
proving theorems. We hope that such a work, besides exploring a nice piece
of discrete mathematics, will show how Coq and its standard library are well
fitted to help us to understand some non-trivial mathematical developments,
and also to experiment the constructive parts of the proof through functional
programming.

We also hope to provide a little clarification on infinity (both potential and
actual) through the notions of function, computation, limit, type and proof.

Compatibility with Gaia (in progress)
The Gaia project [GQS] by José Grimm, Alban Quadrat, and Carlos Simpson,
aims to formalize mathematics in Coq in the style of Nicolas Bourbaki. It
contains many definitions and results about ordinal numbers. In Chapter 7, we
present some modules which allow Hydra-battles’ users to apply lemmas proven
in Gaia, and vice versa. Remarks about compatibility with Gaia are signalled
with the picture G . A special index is in construction (page 361).

Difference from Kirby and Paris’s work
In [KP82], Kirby and Paris show that there is no proof of termination of all
hydra battles in Peano Arithmetic (PA). Since we are used to writing proofs in
higher order logic, the restriction to PA was quite unnatural for us. So we chose
to prove another statement without any reference to PA, by considering a class
of proofs indexed by ordinal numbers up to ε0.

3This class is also called standard in this document (text and proofs). The replication
factor of the hydra is exactly i at the i-th round of the battle (see Sect 2.0.1 on page 22).

20

State of the development
The Coq scripts herein are in constant development since our contribution [CC06]
on notations for the ordinals ε0 and Γ0. We added new material: axiomatic def-
initions of countable ordinals after Schütte [Sch77], combinatorial aspects of
ε0, after Ketonen and Solovay [KS81] and Kirby and Paris [KP82], recent Coq
technology: type classes, function derinition by equations, etc.

We are now working in order to make clumsy proofs more readable, sim-
plify definitions, and “factorize” proofs as much as possible. Many possible
improvements are suggested as “todo”s or “projects” in this text.

Future work (projects)
This document and the proof scripts are far from being complete.

First, there must be a lot of typos to correct, references and index items to
add. Many proofs are too complex and should be simplified, etc.

The following extensions are planned, but help is needed:

• Semiautomatic tactics for proving inequalities α < β, even when α and β
are not closed terms.

• More lemmas about hierarchies of rapidly growing functions, and their
relationship with primitive recursive functions and provability in Peano
arithmetic (following [KS81, KP82]).

• From Coq’s point of view, this development could be used as an illustration
of the evolution of the software, every time new libraries and sets of tactics
could help to simplify the proofs.

Main references
In our development, we adapt the definitions and prove many theorems which
we found in the following articles.

• “Accessible independence results for Peano arithmetic” by Laurie Kirby
and Jeff Paris [KP82]

• ”Rapidly growing Ramsey Functions” by Jussi Ketonen and Robert Solo-
vay [KS81]

• “The Termite and the Tower”, by Will Sladek [Sla07]

• Chapter V of “Proof Theory” by Kurt Schütte [Sch77]

Chapter 2

Hydras and hydra games

This chapter is dedicated to the representation of hydras and rules of the hydra
game in Coq’s specification language: Gallina.

Technically, a hydra is just a finite ordered tree, each node of which has any
number of sons. Contrary to the computer science tradition, we display the
hydras with the heads up and the foot (i.e., the root of the tree) down. Fig. 2.1
represents such a hydra, which will be referred to as Hy in our examples (please
look at the module Hydra.Hydra_Examples). For a less formal description of
hydras, please see https://www.smbc-comics.com/comic/hydra.

•

•

•

•

Figure 2.1: The hydra Hy

We use a specific vocabulary for talking about hydras. Table 2.2 shows the
correspondence between our terminology and the usual vocabulary for trees in
computer science.

The hydra Hy has a foot (below), five heads, and eight segments. We leave
it to the reader to define various parameters such as the height, the size, the
highest arity (number of sons of a node) of a hydra. In our example, these
parameters have the respective values 4, 9 and 3.

21

../theories/html/hydras.Hydra.Hydra_Examples.html
https://www.smbc-comics.com/comic/hydra

22 CHAPTER 2. HYDRAS AND HYDRA GAMES

Hydras Finite rooted trees
foot root
head leaf
node node
segment (directed) edge
sub-hydra subtree
daughter immediate subtree

Figure 2.2: Translation from hydras to trees

2.0.1 The rules of the game
A hydra battle is a fight between Hercules and the Hydra. More formally, a
battle is a sequence of rounds. At each round:

• If the hydra is composed of just one head, the battle is finished and Her-
cules is the winner.

• Otherwise, Hercules chops off one head of the hydra,

– If the head is at distance 1 from the foot, the head is just lost by the
hydra, with no more reaction.

– Otherwise, let us denote by r the node that was at distance 2 from
the removed head in the direction of the foot, and consider the sub-
hydra h′ of h, whose root is r 1. Let n be some natural number. Then
h′ is replaced by n + 1 of copies of h′ which share the same root r.
The replication factor n may be different (and generally is) at each
round of the fight. It may be chosen by the hydra, according to its
strategy, or imposed by some particular rule. In many presentations
of hydra battles, this number is increased by 1 at each round. In the
following presentation, we will also consider battles where the hydra
is free to choose its replication factor at each round of the battle2.

Note that the description given in [KP82] of the replication process in hydra
battles is also semi-formal.

“From the node that used to be attached to the head which was
just chopped off, traverse one segment towards the root until the
next node is reached. From this node sprout n replicas of that part
of the hydra (after decapitation) which is “above” the segment just
traversed, i.e., those nodes and segments from which, in order to
reach the root, this segment would have to be traversed. If the head
just chopped off had the root of its nodes, no new head is grown. ”

Moreover, we note that this description is in imperative terms. In order to
formally study the properties of hydra battles, we prefer to use a mathematical
vocabulary, i.e., graphs, relations, functions, etc. Thus, the replication process

1h′ will be called “the wounded part of the hydra” in the subsequent text. In Figures 2.4
on the next page and 2.6 on page 24, this sub-hydra is displayed in red.

2Let us recall that, if the chopped-off head was at distance 1 from the foot, the replication
factor is meaningless.

23

will be represented as a binary relation on a data type Hydra, linking the state of
the hydra before and after the transformation. A battle will thus be represented
as a sequence of terms of type Hydra, respecting the rules of the game. In other
terms, we consider hydra battles as transition systems.

2.0.2 Example
Let us start a battle between Hercules and the hydra Hy of Fig. 2.1.

At the first round, Hercules chooses to chop off the rightmost head of Hy.
Since this head is near the floor, the hydra simply loses this head. Let us call
Hy' the resulting state of the hydra, represented in Fig. 2.3.

Next, assume Hercules chooses to chop off one of the two highest heads of
Hy', for instance the rightmost one. Fig. 2.4 represents the broken segment in
dashed lines, and the part that will be replicated in red. Assume also that the
hydra decides to add 4 copies of the red part3. We obtain a new state Hy''

depicted in Fig. 2.5.

•

•

•

•

Figure 2.3: Hy': the state of Hy after one round

•

•

•

•

Figure 2.4: A second beheading

3In other words, the replication factor at this round is equal to 4.

24 CHAPTER 2. HYDRAS AND HYDRA GAMES

•

•

•

•• • • • •

Figure 2.5: Hy'': the state of Hy after two rounds

Figs. 2.6 and 2.7 on the next page represent a possible third round of the
battle, with a replication factor equal to 2. Let us call Hy''' the state of the
hydra after that third round.

•

•

•

•• • • • •

Figure 2.6: A third beheading (wounded part in red)

2.1. HYDRAS AND THEIR REPRESENTATION IN COQ 25

•

•

•

•• • • • •

•

•

•• • • • •

•

•

•• • • • •

Figure 2.7: The configuration Hy''' of Hy

We leave it to the reader to guess the following rounds of the battle …

2.1 Hydras and their representation in Coq
In order to describe trees where each node can have an arbitrary (but finite)
number of sons, it is usual to define a type where each node carries a forest,
i.e a list of trees (see for instance Chapter 14, pages 400-406 of [BC04a], also
available as [BC04b]).

For this purpose, we define two mutual ad-hoc inductive types, where Hydra

is the main type, and Hydrae is a helper for describing finite sequences of hydras.

From Module Hydra.Hydra_Definitions

Inductive Hydra : Set :=

| node : Hydrae -> Hydra

with Hydrae : Set :=

| hnil : Hydrae

| hcons : Hydra -> Hydrae -> Hydrae.

Project 2.1 Look for an existing library on trees with nodes of arbitrary arity,
in order to replace this ad-hoc type with something more generic.

Remark 2.1 (Mutually inductive types vs lists of hydras) Another very
similar representation could use the list type family instead of the specific type
Hydrae:

Module Alt.

Inductive Hydra : Set :=

| hnode (daughters : list Hydra).

End Alt.

Using this representation, one can re-define all the constructions of this chap-
ter, which is left as an exercise. You will probably have to use patterns described
for instance in [BC04a, BC04b] or the archives of the Coq communication chan-
nels (please consult https://coq.inria.fr/community.html).

../theories/html/hydras.Hydra.Hydra_Definitions.html#Hydra
https://coq.inria.fr/community.html

26 CHAPTER 2. HYDRAS AND HYDRA GAMES

Project 2.2 Our type Hydra describes hydras as plane oriented trees, i.e., as
drawn on a sheet of paper or computer screen. Thus, it is appropriate to consider
a leftmost or rightmost head of the beast. It could be interesting to consider
another representation, in which every non-leaf node has a multi-set – not an
ordered list – of daughters.

2.1.0.1 Abbreviations

We provide several notations for hydra patterns which occur often in our devel-
opments.
From Module Hydra.Hydra_Definitions

(** *** Hydra with 0, 1, 2 or 3 daughters *)

Notation head := (node hnil).

Notation hyd1 h := (node (hcons h hnil)).

Notation hyd2 h h' := (node (hcons h (hcons h' hnil))).

Notation hyd3 h h' h'' := (node (hcons h (hcons h' (hcons h'' hnil)))).

For instance, the hydra Hy of Figure 2.1 on page 21 is defined as follows:

From Module Hydra.Hydra_Examples

Example Hy := hyd3 head

(hyd2

(hyd1

(hyd2 head head))

head)

head.

Hydras quite frequently contain multiple adjacent copies of the same subtree.
The following functions will help us to describe and reason about replications
in hydra battles.
From Module Hydra.Hydra_Definitions

Fixpoint hcons_mult (h:Hydra)(n:nat)(s:Hydrae):Hydrae :=

match n with

| O => s

| S p => hcons h (hcons_mult h p s)

end.

(** *** Hydra with n equal daughters *)

Definition hyd_mult h n := node (hcons_mult h n hnil).

Let us consider for instance the hydra Hy'' of Fig 2.5 on page 24.
From Module Hydra.Hydra_Examples

../theories/html/hydras.Hydra.Hydra_Definitions.html#head
../theories/html/hydras.Hydra.Hydra_Examples.html#Hy
../theories/html/hydras.Hydra.Hydra_Definitions.html#hcons_mult
../theories/html/hydras.Hydra.Hydra_Examples.html

2.1. HYDRAS AND THEIR REPRESENTATION IN COQ 27

Example Hy'' :=

hyd2 head

(hyd2

(hyd_mult (hyd1 head) 5)

head).

2.1.0.2 Recursive functions on type Hydra

In order to define a recursive function over the type Hydra, one has to consider
the three constructors node, hnil and hcons of the mutually inductive types
Hydra and Hydrae. Let us define for instance the function which computes the
number of nodes of any hydra:
From Module Hydra.Hydra_Definitions

Fixpoint hsize (h:Hydra) : nat :=

match h with

| node l => S (lhsize l)

end

with lhsize l : nat :=

match l with

| hnil => 0

| hcons h hs => hsize h + lhsize hs

end.

Compute hsize Hy.

= 9

: nat

Likewise, the height (maximum distance between the foot and a head) is
defined by mutual recursion:

Fixpoint height (h:Hydra) : nat :=

match h with

| node l => lheight l

end

with lheight l : nat :=

match l with

| hnil => 0

| hcons h hs => Nat.max (S (height h)) (lheight hs)

end.

Compute height Hy.

= 4

: nat

Exercise 2.1 Define a function max_degree: Hydra → nat which returns the
highest degree of a node in any hydra. For instance, the evaluation of the term
(max_degree Hy) should return 3.

../theories/html/hydras.Hydra.Hydra_Definitions.html

28 CHAPTER 2. HYDRAS AND HYDRA GAMES

2.1.1 Induction principles for hydras
In this section, we show how induction principles are used to prove properties
on the type Hydra. Let us consider for instance the following statement:

“ The height of any hydra is strictly less than its size. ”

2.1.1.1 A failed attempt

One may try to use the default tactic of proof by induction, which corresponds
to an application of the automatically generated induction principle for type
Hydra:

Check Hydra_ind.

Hydra_ind

: forall P : Hydra -> Prop,

(forall h : Hydrae, P (node h)) ->

forall h : Hydra, P h

Let us start a simple proof by induction.
From Module Hydra.Hydra_Examples

Module Bad.

Lemma height_lt_size (h:Hydra) : height h < hsize h.

Proof.

induction h as [s].

s: Hydrae

height (node s) < hsize (node s)

We might be tempted to do an induction on the sequence s:

induction s as [| h s'].

height head < hsize head

h: Hydra

s': Hydrae

IHs': height (node s') < hsize (node s')

height (node (hcons h s')) < hsize (node (hcons h s'))

The first subgoal is trivial.

height head < hsize head

simpl; auto with arith.

Let us look now at the second subgoal of the induction.

../theories/html/hydras.Hydra.Hydra_Examples.html

2.1. HYDRAS AND THEIR REPRESENTATION IN COQ 29

h: Hydra

s': Hydrae

IHs': height (node s') < hsize (node s')

height (node (hcons h s')) < hsize (node (hcons h s'))

cbn.

h: Hydra

s': Hydrae

IHs': height (node s') < hsize (node s')

match lheight s' with

| 0 => S (height h)

| S m' => S (Nat.max (height h) m')

end < S (hsize h + lhsize s')

We notice immediately that the context of this sub-goal does not allow to
infer its conclusion. Let’s stop.

Abort.

End Bad.

2.1.1.2 A Principle of mutual induction

In order to get an appropriate induction scheme for the types Hydra and Hydrae,
we can use Coq’s command Scheme.

Scheme Hydra_rect2 := Induction for Hydra Sort Type

with Hydrae_rect2 := Induction for Hydrae Sort Type.

Check Hydra_rect2.

Hydra_rect2

: forall (P : Hydra -> Type)

(P0 : Hydrae -> Type),

(forall h : Hydrae, P0 h -> P (node h)) ->

P0 hnil ->

(forall h : Hydra,

P h ->

forall h0 : Hydrae, P0 h0 -> P0 (hcons h h0)) ->

forall h : Hydra, P h

2.1.1.3 A Correct proof

Let us now use Hydra_rect2 for proving that the height of any hydra is strictly
less than its size. Using this scheme requires an auxiliary predicate, called P0 in
Hydra_rect2’s statement.
From Module Hydra.Hydra_Definitions

(** All elements of s satisfy P *)

Fixpoint h_forall (P: Hydra -> Prop) (s: Hydrae) :=

match s with

| hnil => True

../theories/html/hydras.Hydra.Hydra_Definitions.html

30 CHAPTER 2. HYDRAS AND HYDRA GAMES

| hcons h s' => P h /\ h_forall P s'

end.

From Module Hydra.Hydra_Examples

Lemma height_lt_size (h:Hydra) : height h < hsize h.

Proof.

induction h using Hydra_rect2 with

(P0 := h_forall (fun h => height h < hsize h)).

h: Hydrae

IHh: h_forall (fun h : Hydra => height h < hsize h) h

height (node h) < hsize (node h)

h_forall (fun h : Hydra => height h < hsize h) hnil

h: Hydra

h0: Hydrae

IHh: height h < hsize h

IHh0: h_forall (fun h : Hydra => height h < hsize

h)

h0

h_forall (fun h : Hydra => height h < hsize h)

(hcons h h0)

The first subgoal is easily solvable, using some arithmetic. The second and
third ones are almost trivial. We let the reader look at the source.

Qed.

Exercise 2.2 It happens very often that, in the proof of a proposition of the
form (∀ h:Hydra, P h), the predicate P0 is (h_forall P). Design a tactic for
induction on hydras that frees the user from binding explicitly P0, and solves
trivial subgoals. Apply it for writing a shorter proof script of height_lt_size.

2.2 Relational description of hydra battles
In this section, we represent the rules of hydra battles as a binary relation
associated with a round4, i.e., an interaction composed of the two following
actions:

1. Hercules chops off one head of the hydra.

2. Then, the hydra replicates the wounded part (if the head is at distance
≥ 2 from the foot).

The relation associated with each round of the battle is parameterized by the
expected replication factor (irrelevant if the chopped head is at distance 1 from
the foot, but present for consistency’s sake).

4usually called a small step semantics

../theories/html/hydras.Hydra.Hydra_Examples.html

2.2. RELATIONAL DESCRIPTION OF HYDRA BATTLES 31

In our description, we will apply the following naming convention: if h rep-
resents the configuration of the hydra before a round, then the configuration of
h after this round will be called h′. Thus, we are going to define a proposition
(round_n n h h′) whose intended meaning will be “ the hydra h is transformed
into h′ in a single round of a battle, with the expected replication factor n ”.

Since the replication of parts of the hydra depends on the distance of the
chopped head from the foot, we decompose our description into two main cases,
under the form of a bunch of [mutually] inductive predicates over the types
Hydra and Hydrae.

The mutually exclusive cases we consider are the following:

• R1: The chopped off head was at distance 1 from the foot.

• R2: The chopped off head was at a distance greater than or equal to 2
from the foot.

2.2.1 Chopping off a head at distance 1 from the foot (re-
lation R1)

If Hercules chops off a head next to the root, there is no replication at all. We
use an auxiliary predicate S0, associated with the removing of one head from a
sequence of hydras.

From ModuleHydra.Hydra_Definitions

Inductive S0 : relation Hydrae :=

| S0_first : forall s, S0 (hcons head s) s

| S0_rest : forall h s s', S0 s s' -> S0 (hcons h s) (hcons h s').

Inductive R1 : relation Hydra :=

| R1_intro : forall s s', S0 s s' -> R1 (node s) (node s').

2.2.1.1 Example

Let us represent in Coq the transformation of the hydra of Fig. 2.1 on page 21
into the configuration represented in Fig. 2.3 on page 23.

From Module Hydra.Hydra_Examples

Example Hy_1 : R1 Hy Hy'.

Proof. repeat constructor. Qed.

2.2.2 Chopping off a head at distance ≥ 2 from the foot
(relation R2)

Let us now consider beheadings where the chopped-off head is at distance greater
than or equal to 2 from the foot. All the following relations are parameterized
by the replication factor n.

Let s be a sequence of hydras. The proposition (S1 n s s') holds if s′ is
obtained by replacing some element h of s by n + 1 copies of h′, where the
proposition (R1 h h') holds, in other words, h′ is just h, without the chopped-
off head. S1 is an inductive relation with two constructors that allow us to
choose the position in s′ of the wounded sub-hydra h.

../theories/html/hydras.Hydra.Hydra_Definitions.html
../theories/html/hydras.Hydra.Hydra_Examples.html

32 CHAPTER 2. HYDRAS AND HYDRA GAMES

From Module Hydra.Hydra_Definitions

Inductive S1 (n:nat) : relation Hydrae :=

| S1_first : forall s h h' ,

R1 h h' ->

S1 n (hcons h s) (hcons_mult h' (S n) s)

| S1_next : forall h s s',

S1 n s s' ->

S1 n (hcons h s) (hcons h s').

The rest of the definition is composed of two mutually inductive relations on
hydras and sequences of hydras. The first constructor of R2 describes the case
where the chopped head is exactly at height 2. The others constructors allow
us to consider beheadings at height strictly greater than 2.

From Module Hydra.Hydra_Definitions

Inductive R2 (n:nat) : relation Hydra :=

| R2_intro : forall s s', S1 n s s' -> R2 n (node s) (node s')

| R2_intro_2 : forall s s', S2 n s s' -> R2 n (node s) (node s')

with S2 (n:nat) : relation Hydrae :=

| S2_first : forall h h' s ,

R2 n h h'-> S2 n (hcons h s) (hcons h' s)

| S2_next : forall h r r',

S2 n r r' -> S2 n (hcons h r) (hcons h r').

2.2.2.1 Example

Let us prove the transformation of Hy' into Hy'' (see Fig. 2.5 on page 24). We
use an experimental set of tactics5 for specifying the place where the interaction
between Hercules and the hydra holds.

From Module Hydra.Hydra_Examples.

Example R2_example: R2 4 Hy' Hy''.

Proof.

R2 4 Hy' Hy''

(** move to 2nd sub-hydra (0-based indices) *) r2_up 1.

R2 4 (hyd2 (hyd1 (hyd2 head head)) head)

(hyd2 (hyd_mult (hyd1 head) 5) head)

(** move to first sub-hydra *) r2_up 0.

R2 4 (hyd1 (hyd2 head head)) (hyd_mult (hyd1 head) 5)

(** we're at distance 2 from the to-be-chopped-off head

let's go to the first daughter,

then chop-off the leftmost head *) r2_d2 0 0.

Qed.

5See the Ltac definitions in Hydra.Hydra_Definitions.

../theories/html/hydras.Hydra.Hydra_Definitions.html#S1
../theories/html/hydras.Hydra.Hydra_Definitions.html#R2
../theories/html/hydras.Hydra.Hydra_Examples.html
../theories/html/hydras.Hydra.Hydra_Definitions.html#R2

2.2. RELATIONAL DESCRIPTION OF HYDRA BATTLES 33

The reader is encouraged to look at all the successive subgoals of this exam-
ple. Please consider also exercise 2.5 on the next page.

2.2.3 Binary relation associated with a round
Let us merge R1 and R2 into a single relation. First, we define the relation
(round_n n h h') where n is the expected number of replications (irrelevant in
the case of an R1-transformation). Then, we define a round (small step) of a
battle by abstraction over n,

From Module Hydra.Hydra_Definitions

Definition round_n n h h' := R1 h h' \/ R2 n h h'.

Definition round h h' := exists n, round_n n h h'.

Infix "-1->" := round (at level 60).

Project 2.3 Give a direct translation of Kirby and Paris’s description of hy-
dra battles (quoted on page 22) and prove that our relational description is
consistent with theirs.

2.2.4 Rounds and battles
Using library Relations.Relation_Operators, we define round_plus, the transi-
tive closure of round, and round_star, the reflexive and transitive closure of
round.

Definition round_plus := clos_trans_1n Hydra round.

Definition round_star h h' := h = h' \/ round_plus h h'.

Infix "-+->" := round_plus (at level 60).

Infix "-*->" := round_star (at level 60).

Remark 2.2 Coq’s library Coq.Relations.Relation_Operators contains three
logically equivalent definitions of the transitive closure of a binary relation.
This equivalence is proved in Coq.Relations.Operators_Properties .

Why three definitions for a single mathematical concept? Each definition
generates an associated induction principle. According to the form of statement
one would like to prove, there is a “best choice”:

• To prove ∀y, xR+ y → P y, prefer clos_trans_n1

• To prove proving ∀x, xR+ y → P x, prefer clos_trans_1n

• To prove ∀x y, xR+ y → P x y, prefer clos_trans,

But there is no “wrong choice” at all: the equivalence lemmas in
Coq.Relations.Operators_Properties allow the user to convert any one of the
three closures into another one before applying the corresponding elimination
tactic. The same remark also holds for reflexive and transitive closures.

../theories/html/hydras.Hydra.Hydra_Definitions.html#round_n
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Operators_Properties.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Operators_Properties.html

34 CHAPTER 2. HYDRAS AND HYDRA GAMES

Exercise 2.3 Prove that if h -+-> h′, then the height of h′ is less or equal than
the height of h.

Exercise 2.4 Define a restriction of round, where Hercules always chops off
the leftmost among the lowest heads.

Prove that, if h is not a simple head, then there exists a unique h′ such that
h is transformed into h′ in one round, according to this restriction.

Exercise 2.5 (Interactive battles) Given a hydra h, the specification of a
hydra battle for h is the type {h':Hydra | h -*-> h'}. In order to avoid long
sequences of split, left, and right, design a set of dedicated tactics for the
interactive building of a battle. Your tactics will have the following functional-
ities:

• Choose to stop a battle, or continue

• Choose an expected number of replications

• Navigate in a hydra, looking for a head to chop off.

Use your tactics for simulating a small part of a hydra battle, for instance
the rounds which lead from Hy to Hy''' (Fig. 2.7 on page 25).

Hints:

• Please keep in mind that the last configuration of your interactively built
battle is known only at the end of the battle. Thus, you will have to
create and solve subgoals with existential variables. For that purpose, the
tactic eexists, applied to the goal {h':Hydra | h -*-> h'} generates the
subgoal h -*-> ?h'.

• You may use Gérard Huet’s zipper data structure [Hue97] for writing
tactics associated with Hercules’s interactive search for a head to chop off.

2.2.5 Classes of battles
In some presentations of hydra battles, e.g. [KP82, Bau08], the transformation
associated with the i-th round may depend on i. For instance, in these articles,
the replication factor at the i-th round is equal to i. In other examples, one can
allow the hydra to apply any replication factor at any time. In order to be the
most general as possible, we define the type of predicates which relate the state
of the hydra before and after the i-th round of a battle.

From Module Hydra.Hydra_Definitions

Definition round_t := nat -> Hydra -> Hydra -> Prop.

Class Battle :=

{ battle_rel : round_t;

battle_ok : forall i h h', battle_rel i h h' -> round h h'}.

Arguments battle_rel : clear implicits.

../theories/html/hydras.Hydra.Hydra_Definitions.html

2.2. RELATIONAL DESCRIPTION OF HYDRA BATTLES 35

The most general class of battles is free, which allows the hydra to choose
any replication factor at every step:

From Module Hydra.Hydra_Definitions

#[global, refine] Instance free : Battle

:= Build_Battle (fun _ h h' => round h h') _.

Proof. easy. Defined.

We chose to call standard6 the kind of battles which appear most often in the
literature and correspond to an arithmetic progression of the replication factor
: 0, 1, 2, 3, . . .

From Module Hydra.Hydra_Definitions

#[global, refine] Instance standard : Battle :=

Build_Battle round_n _.

Proof.

intros i h h' H; now exists i.

Defined.

2.2.6 Big steps
Let B be any instance of class Battle. It is easy to define inductively the relation
between the i-th and the j-th steps of a battle of type B.

From Module Hydra.Hydra_Definitions

Inductive rounds (B:Battle)

: nat -> Hydra -> nat -> Hydra -> Prop :=

rounds_1 : forall i h h',

battle_rel B i h h' -> rounds B i h (S i) h'

| rounds_n : forall i h j h' h'',

battle_rel B i h h'' ->

rounds B (S i) h'' j h' ->

rounds B i h j h'.

(** number of steps leading to the hydra's death *)

Definition battle_length B k h l :=

rounds B k h (Nat.pred (k + l)%nat) head.

The following property allows us to build battles by composition of smaller
ones.

From Module Hydra.Hydra_Lemmas

Lemma rounds_trans {B:Battle} :

forall i h j h', rounds B i h j h' ->

forall k h0, rounds B k h0 i h ->

rounds B k h0 j h'.

Proof.

6This appellation is ours. If there is a better one, we will change it.

../theories/html/hydras.Hydra.Hydra_Definitions.html#free
../theories/html/hydras.Hydra.Hydra_Definitions.html#standard
../theories/html/hydras.Hydra.Hydra_Definitions.html#fight
../theories/html/hydras.Hydra.Hydra_Lemmas.html

36 CHAPTER 2. HYDRAS AND HYDRA GAMES

intros i h j h' H k h0. induction 1 /dr.

- intros h'0 ? ?; now right with h'0.

- intros ? ? ? h'' ? ? ? ; right with h'';auto.

Qed.

2.3 A long battle
In this section we consider a simple example of battle, starting with a small
hydra, shown on figure 2.8, with a simple strategy for both players:

• At each round, Hercules chops off the rightmost head of the hydra.

• The battle is standard: at the round number i, the expected replication
factor is i.

•

•

Figure 2.8: The hydra hinit

From Module Hydra.BigBattle

#[local] Notation h3 := (hyd_mult head 3).

Definition hinit := hyd3 h3 head head.

The lemma we would like to prove is “The considered battle lasts exactly N
rounds”, with N being a natural number we have to guess.

But the battle is so long that no test can give us any estimation of its
length. Nevertheless, in order to guess this length, we made some experiments,
computing with Gallina, Coq’s functional programming language. Thus, we
can consider this development as a collaboration of proof with computation.
In the rest of this section, we show how we found experimentally the value of
the number N . The complete proof is in file ../theories/html/hydras.Hydra.

BigBattle.html.

2.3.1 First rounds
During the two first rounds, our hydra loses its two rightmost heads. Figure 2.9
on the facing page shows the state of the hydra just before the third round.

The following lemma is a formal description of these first rounds, in terms
of the rounds predicate.

Lemma L_0_2 : rounds standard 0 hinit 2 (hyd1 h3).

Proof.

eapply rounds_trans with (h := hyd2 h3 head) (i:=1).

(* ... *)

Qed.

../theories/html/hydras.Hydra.BigBattle.html
../theories/html/hydras.Hydra.BigBattle.html
../theories/html/hydras.Hydra.BigBattle.html

2.3. A LONG BATTLE 37

•

•

Figure 2.9: The hydra (hyd1 h3)

2.3.2 Looking for regularities

A first study with pencil and paper suggested us that, after three rounds, the
hydra always looks like in figure 2.10 (with a variable number of subtrees of
height 1 or 0). Thus, we introduce a few handy abbreviations.

Notation h2 := (hyd_mult head 2).

Notation h1 := (hyd1 head).

Notation hyd a b c :=

(node (hcons_mult h2 a

(hcons_mult h1 b

(hcons_mult head c hnil)))).

For instance, the hydra shown in Fig 2.10 is (hyd 3 4 2). The hydra (hyd 0

0 0) is the “final” hydra of any terminating battle, i.e., a tree whith exactly one
node and no edge.

•

• • • • • • •

Figure 2.10: The hydra (hyd 3 4 2)

With these notations, we get a formal description of the first three rounds.

Lemma L_2_3 : rounds standard 2 (hyd1 h3) 3 (hyd 3 0 0).

Proof.

left; trivial; right ; simpl; left; left.

split; right; right; left.

Qed.

Lemma L_0_3 : rounds standard 0 hinit 3 (hyd 3 0 0).

Proof.

apply rounds_trans with (1:= L_2_3) (2:= L_0_2).

Qed.

38 CHAPTER 2. HYDRAS AND HYDRA GAMES

2.3.3 Testing …
In order to make the study of this battle easier, we will use a simple data type
for representing a configuration (round, hyd n2 n1 nh) as the 4-tuple

Record state : Type :=

mks {round : nat ; n2 : nat ; n1 : nat ; nh : nat}.

The following function returns the next configuration of the game. Note
that this function is defined only for making experiments and is not “certified”.
Formal proofs about our battle only start with the lemma step_rounds, page 40.

Definition next (s : state) :=

match s with

| mks round a b (S c) => mks (S round) a b c

| mks round a (S b) 0 => mks (S round) a b (S round)

| mks round (S a) 0 0 => mks (S round) a (S round) 0

| _ => s

end.

We can make bigger steps through iterations of next. The functional iterate,
similar to Standard Library’s Nat.iter, is defined and studied in Prelude.Iter-
ates.

Fixpoint iterate {A:Type}(f : A -> A) (n: nat)(x:A) :=

match n with

| 0 => x

| S p => f (iterate f p x)

end.

The following function computes the state of the battle at the n-th round.

Definition test n := iterate next (n-3) (mks 3 3 0 0).

Compute test 3.

= {| round := 3; n2 := 3; n1 := 0; nh := 0 |}

: state

Compute test 4.

= {| round := 4; n2 := 2; n1 := 4; nh := 0 |}

: state

Compute test 5.

= {| round := 5; n2 := 2; n1 := 3; nh := 5 |}

: state

Compute test 2000.

= {|

round := 2000; n2 := 1; n1 := 90; nh := 1102

|}

: state

../theories/html/hydras.Prelude.Iterates.html#iterate
../theories/html/hydras.Prelude.Iterates.html#iterate

2.3. A LONG BATTLE 39

The battle we are studying looks to be awfully long. Let us concentrate our
tests on some particular events : the states where nh = 0. From the value of
test 5, it is obvious that at the 10-th round, the counter nh is equal to zero.

Compute test 10.

= {| round := 10; n2 := 2; n1 := 3; nh := 0 |}

: state

Thus, (1 + 11) rounds later, the n1 field is equal to 2, and nh to 0.

Compute test 22.

= {| round := 22; n2 := 2; n1 := 2; nh := 0 |}

: state

Compute test 46.

= {| round := 46; n2 := 2; n1 := 1; nh := 0 |}

: state

Compute test 94.

= {| round := 94; n2 := 2; n1 := 0; nh := 0 |}

: state

Next round, we decrement n2 and set n1 to 95.

Compute test 95.

= {| round := 95; n2 := 1; n1 := 95; nh := 0 |}

: state

We now have some intuition of the sequence. It looks like the next “nh=0”
event will happen at the 192 = 2(95 + 1)-th round, then at the 2(192 + 1)-th
round, etc.

Definition doubleS (n : nat) := 2 * (S n).

Compute test (doubleS 95).

= {| round := 192; n2 := 1; n1 := 94; nh := 0 |}

: state

Compute test (iterate doubleS 2 95).

= {| round := 386; n2 := 1; n1 := 93; nh := 0 |}

: state

2.3.4 Proving …
We are now able to reason about the sequence of transitions defined by our
hydra battle.

40 CHAPTER 2. HYDRAS AND HYDRA GAMES

Let us define a binary relation associated with every round of the battle. In
the following definition i is associated with the round number (or date, if we
consider a discrete time), and a, b, c respectively associated with the number of
occurrences of h2, h1 and heads connected to the hydra’s foot. For convenience7,
we do not use the type state of the preceding section, but consider the round
numbers and the number of hydras h2, h1 and heads as separate arguments of
the relation (which is no more —formally— “binary”).

Inductive one_step (i: nat) :

nat -> nat -> nat -> nat -> nat -> nat -> Prop :=

| step1: forall a b c, one_step i a b (S c) a b c

| step2: forall a b , one_step i a (S b) 0 a b (S i)

| step3: forall a, one_step i (S a) 0 0 a (S i) 0.

The relation between one_step and the rules of hydra battles is asserted by
the following lemma.

Lemma step_rounds : forall i a b c a' b' c',

one_step i a b c a' b' c' ->

rounds standard i (hyd a b c) (S i) (hyd a' b' c').

Next, we define “big steps” as the transitive closure of one_step, and reach-
ability (from the initial configuration of figure 2.8 at time 0).

Inductive steps : nat -> nat -> nat -> nat ->

nat -> nat -> nat -> nat -> Prop :=

| steps1 : forall i a b c a' b' c',

one_step i a b c a' b' c' -> steps i a b c (S i) a' b' c'

| steps_S : forall i a b c j a' b' c' k a'' b'' c'',

steps i a b c j a' b' c' ->

steps j a' b' c' k a'' b'' c'' ->

steps i a b c k a'' b'' c''.

(** reachability (for i > 0) *)

Definition reachable (i a b c : nat) : Prop :=

steps 3 3 0 0 i a b c.

The following lemma establishes a relation between steps and the predicate
rounds.

Lemma steps_rounds : forall i a b c j a' b' c',

steps i a b c j a' b' c' ->

rounds standard i (hyd a b c) j (hyd a' b' c').

Thus, any result about steps will be applicable to standard battles. Using
the predicate steps, our study of the length of the considered battle can be
decomposed into three parts:

7In a few words, the type state was designed for performing computations, and steps for
writing interactive proofs, inspired by the aforementionned computations.

2.3. A LONG BATTLE 41

1. Characterization and proofs of regularities of some events (inspired by our
experiments of Sect. 2.3.3).

2. Study of the beginning of the battle

3. Computing the exact length of the battle.

First, we prove that, if at round i the hydra is equal to (hyd a (S b) 0),
then it will be equal to (hyd a b 0) at the 2(i+ 1)-th round.

Lemma LS : forall c a b i, steps i a b (S c) (i + S c) a b 0.

Proof.

induction c.

- intros; replace (i + 1) with (S i) by ring.

repeat constructor.

- intros; eapply steps_S.

+ eleft; apply step1.

+ replace (i + S (S c)) with (S i + S c) by ring; apply IHc.

Qed.

(** The law that relates two consecutive events with (nh = 0) *)

Lemma doubleS_law : forall a b i, steps i a (S b) 0 (doubleS i) a b 0.

Proof.

intros; eapply steps_S.

+ eleft; apply step2.

+ unfold doubleS; replace (2 * S i) with (S i + S i) by ring;

apply LS.

Qed.

Lemma reachable_S : forall i a b, reachable i a (S b) 0 ->

reachable (doubleS i) a b 0.

Proof. intros; right with (1 := H); apply doubleS_law. Qed.

From now on, the lemma reachable_S allows us to watch larger and larger
steps of the battle.

Lemma L4 : reachable 4 2 4 0.

Proof. left; constructor. Qed.

Lemma L10 : reachable 10 2 3 0.

Proof. change 10 with (doubleS 4); apply reachable_S, L4. Qed.

Lemma L22 : reachable 22 2 2 0.

Proof. change 22 with (doubleS 10); apply reachable_S, L10. Qed.

Lemma L46 : reachable 46 2 1 0.

Proof. change 46 with (doubleS 22); apply reachable_S, L22. Qed.

42 CHAPTER 2. HYDRAS AND HYDRA GAMES

Lemma L94 : reachable 94 2 0 0.

Proof. change 94 with (doubleS 46); apply reachable_S, L46. Qed.

Lemma L95 : reachable 95 1 95 0.

Proof. eapply steps_S; [eapply L94|]; repeat constructor. Qed.

2.3.5 Giant steps
We are now able to make bigger steps in the simulation of the battle. First, we
iterate the lemma reachable_S.

Lemma Bigstep : forall b i a , reachable i a b 0 ->

reachable (iterate doubleS b i) a 0 0.

Proof.

induction b.

- trivial.

- intros; simpl; apply reachable_S in H.

rewrite <- iterate_comm; now apply IHb.

Qed.

Applying lemmas BigStep and L95 we make a first jump.

Definition M := iterate doubleS 95 95.

Lemma L2_95 : reachable M 1 0 0.

Proof. apply Bigstep, L95. Qed.

Figure 2.11 represents the hydra at the M -th round. At the (M + 1)-th
round, it will look like in fig 2.12.

•

•

Figure 2.11
The state of the hydra after M rounds.

Lemma L2_95_S : reachable (S M) 0 (S M) 0.

Proof. eright; [apply L2_95 | left; constructor]. Qed.

Then, applying once more the lemma BigStep, we get the exact time when
Hercules wins!

Definition N := iterate doubleS (S M) (S M).

Theorem SuperbigStep : reachable N 0 0 0.

Proof. apply Bigstep, L2_95_S. Qed.

2.3. A LONG BATTLE 43

•

• • • •

. . .

. . . • •

Figure 2.12
The state of the hydra after M + 1 rounds (with M + 1 heads).

We are now able to prove formally that the considered battle is composed
of N steps.

Lemma Almost_done :

rounds standard 3 (hyd 3 0 0) N (hyd 0 0 0).

Proof. apply steps_rounds, SuperbigStep. Qed.

Theorem Done :

rounds standard 0 hinit N head.

Proof. eapply rounds_trans with (1:= Almost_done) (2:= L_0_3). Qed.

2.3.6 A minoration lemma
Now, we would like to get an intuition of how big the number N is. For that
purpose, we use a minoration of the function doubleS by the function (fun n =>

2 * n).

Fixpoint exp2 (n:nat) : nat :=

match n with

0 => 1

| S i => 2 * exp2 i

end.

Using a few facts (proven in hydras.Hydra.BigBattle),we get several mino-
rations.

Lemma minoration_0 : forall n, 2 * n <= doubleS n.

Lemma minoration_1 : forall n x, exp2 n * x <= iterate doubleS n x.

Lemma minoration_2 : exp2 95 * 95 <= M.

Lemma minoration_3 : exp2 (S M) * S M <= N.

Lemma minoration : exp2 (exp2 95 * 95) <= N.

../theories/html/hydras.Hydra.BigBattle.html

44 CHAPTER 2. HYDRAS AND HYDRA GAMES

The number N is greater than or equal to 22
95×95. If we write N in base 10,

N would require at least 1030 digits!

2.4 Generic properties
The example we just studied shows that the termination of any battle may take
a very long time. If we want to study hydra battles in general, we have to
consider any hydra and any strategy, both for Hercules and the hydra itself.
So, we first give some definitions, generally borrowed from transition systems
vocabulary (see [Tel00] for instance).

2.4.1 Liveliness
Let B be an instance of Battle. We say that B is alive if for any configuration
(i, h), where h is not a head, there exists a further step in class B.

From Module Hydra.Hydra_Definitions

Definition Alive (B : Battle) :=

forall i h, h <> head -> {h' : Hydra | battle_rel B i h h'}.

The theorems Alive_free and Alive_standard of the module Hydra.Hy-
dra_Theorems show that the classes free and standard satisfy this property.

From Module Hydra.Hydra_Lemmas

(** If the hydra is not reduced to a head, there exists at

least one head that Hercules can chop off *)

Definition next_round_dec n (h: Hydra) :

(h = head) + {h' : Hydra & {R1 h h'} + {R2 n h h'}}.

From Module Hydra.Hydra_Theorems

Corollary Alive_free : Alive free.

Corollary Alive_standard : Alive standard.

2.4.2 Termination
The termination of any battle is naturally expressed by the predicate well_founded
defined in the module Coq.Init.Wf of the Standard Library.

Definition Termination := well_founded (transp _ round).

Let B be an instance of class Battle. A variant for B consists in a well-
founded relation < on some type A, and a function (also called a measure)
m : Hydra → A such that for any successive steps (i, h) and (1+ i, h′) of a battle
in B, the inequality m(h′) < m(h) holds.

From Module Hydra.Hydra_Definitions

../theories/html/hydras.Hydra.Hydra_Definitions.html#Alive
../theories/html/hydras.Hydra.Hydra_Theorems.html
../theories/html/hydras.Hydra.Hydra_Theorems.html
../theories/html/hydras.Hydra.Hydra_Lemmas.html#next_round_dec
../theories/html/hydras.Hydra.Hydra_Theorems
https://coq.inria.fr/distrib/current/stdlib/Coq.Init.Wf.html
../theories/html/hydras.Hydra.Hydra_Definitions.html#Hvariant

2.4. GENERIC PROPERTIES 45

Class Hvariant {A:Type}{Lt:relation A}

(Wf: well_founded Lt)(B : Battle)

(m: Hydra -> A): Prop :=

{variant_decr: forall i h h',

h <> head -> battle_rel B i h h' -> Lt (m h') (m h)}.

Exercise 2.6 Prove that, if there exists some instance of (Hvariant Lt wf_Lt

B m), then there exists no infinite battle in B.

2.4.3 A small proof of impossibility
When one wants to prove a termination theorem with the help of a variant,
one has to consider first a well-founded set (A,<), then a strictly decreasing
measure on this set. The following lemma shows that, if the order structure
(A,<) is too simple, it is useless to look for a convenient measure, which simply
no exists. Such kind of result is useful, because it saves you time and effort.

The best known well-founded order is the natural order on the set N of
natural numbers (the type nat of Standard Library). It would be interesting to
look for some measure m : nat→nat and prove it is a variant.

Unfortunately, we can prove that no instance of class (WfVariant round

Peano.lt m) can be built, where m is any function of type Hydra → nat.
Let us present the main steps of that proof, the script of which is in the

module Hydra/Omega_Small.v 8.
Let us assume there exists some variant m from Hydra into (nat,<) for prov-

ing the termination of all hydra battles.

Section Impossibility_Proof.

(** Let us assume there exists a variant from Hydra into nat

for proving the termination of all hydra battles

[Omega] is an ordinal notation for the least infinite ordinal

[omega], whose members are the natural numbers.

*)

Variable m : Hydra -> nat.

Context (Hvar : Hvariant Omega free m).

We define an injection ι from the type nat into Hydra. For any natural
number i, ι(i) is the hydra composed of a foot and i+ 1 heads at height 1. For
instance, Fig. 2.13 represents the hydra ι(3).

Let iota (i: nat) := hyd_mult head (S i).

Let us consider now some hydra big_h out of the range of the injection ι (see
Fig. 2.14 on the following page).

Let big_h := hyd1 (hyd1 head).

8The name of this file means “the ordinal ω is too small for proving the termination of
[free] hydra battles ”. In effect, the elements of ω, considered as a set, are just the natural
numbers (see next chapter for more details)

../theories/html/hydras.Hydra.Omega_Small.html

46 CHAPTER 2. HYDRAS AND HYDRA GAMES

•

Figure 2.13: The hydra ι(3)

•

•

Figure 2.14
The hydra big_h.

Using the functions m and ι, we define a second hydra small_h, and show
there is a one-round battle that transforms big_h into small_h. Please note that,
due to the hypothesis Hvar, we are interested in the termination of free battles.
There is no problem to consider a round with (m big_h) as the replication factor.

Let small_h := iota (m big_h).

Fact big_to_small: forall i, battle_rel free i big_h small_h.

Proof.

exists (m big_h); right; repeat constructor.

Qed.

But, by hypothesis, m is a variant. Hence, we infer the following inequality.

Lemma m_lt : m small_h < m big_h.

Proof.

apply (variant_decr 0); auto with hydra.

discriminate.

Qed.

In order to get a contradiction, it suffices to prove the inequality m(big_h) ≤
m(small_h) i.e., m(big_h ≤ m(ι(m(big_h))).

Lemma m_ge : m big_h <= m small_h.

Intuitively, it means that, from any hydra of the form (iota i), the battle
will take (at least) i rounds. Thus the associated measure cannot be less than
i. Technically, we prove this lemma by Peano induction on i.

• The base case i = 0 is trivial

• Otherwise, let i be any natural number and assume the inequality i ≤
m(ι(i)).

2.4. GENERIC PROPERTIES 47

1. But the hydra ι(S(i)) can be transformed in one round into ι(i) (by
losing its rightmost head, for instance)

2. Since m is a variant, we have m(ι(i)) < m(ι(S(i))), hence i <
m(ι(S(i))), which implies S(i) ≤ m(ι(S(i))).

We are now ready to complete our impossibility proof.

induction i.

- auto with arith.

- apply Nat.le_lt_trans with (m (iota i)).

(* ... *)

Qed.

Theorem Contradiction : False.

Proof. generalize m_lt, m_ge; intros; lia. Qed.

End Impossibility_Proof.

Exercise 2.7 Prove that there exists no variant m from Hydra into nat for
proving the termination of all standard battles.

2.4.3.1 Conclusion

In order to build a variant for proving the termination of all hydra battles, we
need to consider order structures more complex than the usual order on type
nat. The notion of ordinal number provides a catalogue of well-founded order
types. For a reasonably large bunch of ordinal numbers, ordinal notations are
data-types which allow the Coq user to define functions, to compute and prove
some properties, for instance by reflection.

The next chapter is dedicated to a generic formalization of ordinal notations,
and chapter 4 to a proof of termination of all hydra battles with the help of an
ordinal notation for the interval [0, ε0) 9.

9We use the mathematical notation [a, b) for the interval {x|a ≤ x < b}.

48 CHAPTER 2. HYDRAS AND HYDRA GAMES

Chapter 3

Introduction to ordinal
numbers and ordinal
notations

The proof of termination of all hydra battles presented in [KP82] is based on
ordinal numbers. From a mathematical point of view, an ordinal is a represen-
tative of an equivalence class for isomorphisms of totally ordered well-founded
sets.

For the computer scientist, ordinals are tools for proving the totality of a
given recursive function, or termination of a transition system. Ordinal arith-
metic provides a set of functions whose properties, like monotony, allow to define
variants, i.e. strictly decreasing measures used in proofs of termination.

Let us have a look at Figure 3.1. It presents a few items of a sequence of
ordinal numbers, which extends the sequence of natural numbers.

Let us comment some features of this figure:

• The ordinals are listed in a strictly increasing order.

• Dots : “. . .” stand for infinite sequences of ordinals, not shown for lack of
space. For instance, the ordinal 42 is not shown in the first line, but it
exists, somewhere between 17 and ω.

• Each ordinal printed in black is the immediate successor of another ordinal.
We call it a successor ordinal. For instance, 12 is the successor of 11, and
ω4 + 1 the successor of ω4.

• Ordinals (displayed in red) that follow immediately dots are called limit
ordinals. With respect to the order induced by this sequence, any limit
ordinal α is the least upper bound of the set Oα of all ordinals strictly
less than α. For instance,ω is the least upper bound of the set of all finite
ordinals (in the first line). It is also the first limit ordinal, and the first
infinite ordinal number, in the sense that the set Oω is infinite.

• The ordinal ε0 is the first number which is equal to its own exponential
of base ω. It plays an important role in proof theory, and is particularly
studied in chapters 4 to 6.

49

50CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . .

ω, ω + 1, ω + 2, ω + 3, . . .

ω × 2, ω × 2 + 1, . . . , ω × 3, ω × 3 + 1, . . . , ω × 4, . . .

ω2, . . . , ω2 × 42, . . . , ω3, . . . , ω4, ω4 + 1, . . .

ωω, . . . , ωω + ω7 × 8, . . . , ωω × 2, ωω × 2 + 1, . . .

ωω
ω

, . . . , ωω
ω

+ ωω × 42 + ω55 + ω, . . . , ωω
ω+1

, ωω
ω+1

+ 1, . . .

ε0(= ωε0), ε0 + 1, ε0 + 2, ε0 + 3, . . .

ε1, . . . , ε2, . . . , εω, . . .

Γ0,Γ0 + 1,Γ0 + 2,Γ0 + 3, . . . ,Γ0 + ω, . . .

. . .

Figure 3.1: A short overview of the sequence of ordinal numbers

• Any ordinal is either the ordinal 0, a successor ordinal, or a limit ordinal.

3.1 The mathematical point of view
We cannot cite all the literature published on ordinals since Cantor’s book
[Can55], and leave it to the reader to explore the bibliography. The introduction
of José Grimm’s report [Gri13] contains also a nice presentation of the main
properties of ordinals.

For simplicity’s sake, we will only give the definitions which are useful for
understanding our Coq development.

3.1.1 Well-ordered sets
Let us start with some definitions. A well-ordered set is a set provided with a
binary relation < which has the following properties.

irreflexivity : ∀x ∈ A, x 6< x

transitivity : ∀x y z ∈ A, x < y ⇒ y < z ⇒ x < z

trichotomy : ∀x y ∈ A, x < y ∨ x = y ∨ y < x

well foundedness : < is well-founded (every element of A is accessible)1.

1In classical mathematics, we would say that there is no infinite sequence a1 > a2 >
. . . an > an+1 . . . in A. In contrast, Coq’s standard library contains an inductive definition of
a predicate Acc which allows us to write constructive proofs of accessibility (See Coq.Init.Wf).

https://coq.inria.fr/distrib/current/stdlib/Coq.Init.Wf.html

3.2. ORDINAL NUMBERS IN COQ 51

The best known examples of well-ordered sets are the set N of natural num-
bers (with the usual order <), as well as any finite segment [0, i) = {j ∈ N | j <
i}. The disjoint union of two copies of N, i.e. the set {0, 1} × N is also well-
ordered, with respect to the order below:

(i, j) < (i, k) if j < k

(0, k) < (1, l) for any k and l

3.1.2 Ordinal numbers
Let (A,<A) and (B,<B) two well-ordered sets. A and B are said to have the
same order type if there exists a strictly monotonous bijection b from A to B,
i.e. which verifies the proposition ∀x y ∈ A, x <A y ⇒ b(x) <B b(y).

Having the same order type is an equivalence relation between well-ordered
sets. Ordinal numbers (in short: ordinals) are descriptions (names) of the asso-
ciated equivalence classes. For instance, the order type of (N, <) is associated
with the ordinal called ω, and the order we considered on the disjoint union of
two copies of N is associated with ω × 2 (a.k.a. ω + ω).

In a set-theoretic framework, one can consider any ordinal α as a well-ordered
set, whose elements are just the ordinals strictly less than α, i.e. the segment
Oα = [0, α). So, one can speak about finite, infinite, countable, etc., ordinals.
Nevertheless, since we work within type theory, we do not identify ordinals
as sets of ordinals, but consider the correspondence between ordinals and sets
of ordinals as the function that maps α to Oα. For instance Oω = N, and
O7 = {0, 1, 2, 3, 4, 5, 6}.

3.2 Ordinal numbers in Coq
Two kinds of representation of ordinals are defined in our development.

• A “mathematical” representation of the set of countable ordinal numbers,
after Kurt Schütte [Sch77]. This representation uses several (hopefully
harmless) axioms. We use it as a reference for proving the correctness of
ordinal notations.

G We are also progressively importing Gaia’s [GQS] definitions and the-
orems, based on Bourbaki’s set theory [Gri16]. Chapter 7 is dedicated to
the connexion between libraries Hydra-battles and Gaia.

• A family of ordinal notations (also called [ordinal] notation systems), i.e.
data types used to represent segments [0, µ), where µ is some countable
ordinal. Each ordinal notation is defined inside the Calculus of Inductive
Constructions (without axioms). Many functions are defined, allowing
proofs by computation. Note that proofs of correctness of a given ordinal
notation with respect to Schütte’s model obviously use axioms. Please
execute the Print Assumptions command in case of doubt.

It is interesting to compare proofs of a given property (for instance the
associativity of addition) both in the computational framework of some ordinal
notation, and in mathematical models of Schütte or Gaia.

52CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

3.3 Ordinal Notations
Fortunately, the ordinals we need for studying hydra battles are much simpler
than Schütte’s, and can be represented as quite simple data types in Gallina.

Let α be some (countable) ordinal; we call ordinal notation for α any struc-
ture composed of:

• A data type A for representing all ordinals strictly below α,

• A well founded order < on A,

• A correct function for comparing two ordinals. Note that the reflexive
closure of < is thus a total order.

Such a structure should be proved correct relatively to a bigger ordinal no-
tation or to Schütte’s or Gaia’s model.

3.3.1 Classes for ordinal notations
From the Coq user’s point of view, an ordinal notation is a structure allowing to
compare two ordinals by computation, and proving by well-founded induction.

3.3.1.1 The Comparable class

The Comparable class, contributed by Jérémy Damour and Théo Zimmermann,
allows us to apply generic lemmas and tactics about decidable strict orders.
The correctness of the comparison function is expressed through Stdlib’s type
Datatypes.CompareSpec and predicate Datatypes.CompSpec.

Inductive CompareSpec (Peq Plt Pgt : Prop) :

comparison -> Prop :=

CompEq : Peq -> CompareSpec Peq Plt Pgt Eq

| CompLt : Plt -> CompareSpec Peq Plt Pgt Lt

| CompGt : Pgt -> CompareSpec Peq Plt Pgt Gt.

Definition CompSpec {A} (eq lt : A -> A -> Prop) (x y : A) :=

CompareSpec (eq x y) (lt x y) (lt y x).

From Module Prelude.Comparable

Class Compare (A:Type) := compare : A -> A -> comparison.

Class Comparable {A:Type} (lt: relation A) (cmp : Compare A) :=

{

comparable_sto :> StrictOrder lt;

comparable_comp_spec : forall (a b : A), CompSpec eq lt a b (compare a b)

}.

3.3.1.2 The ON class

The following class definition, parameterized with a type A, a binary relation
lt on A, specifies that lt is a well-founded strict order, provided with a correct
comparison function.
From Library OrdinalNotations.ON_Generic

../theories/html/hydras.Prelude/mparable.html#Hvariant
../theories/html/hydras.OrdinalNotations.ON_Generic.html

3.3. ORDINAL NOTATIONS 53

Class ON {A:Type} (lt: relation A) (cmp: Compare A) :=

{

ON_comp :> Comparable lt cmp;

ON_wf : well_founded lt;

}.

#[global] Existing Instance ON_comp.

Coercion ON_wf : ON >-> well_founded.

Definition rep {A:Type} {lt: relation A} {cmp: Compare A}

(on : ON lt cmp) := A.

#[global] Coercion rep : ON >-> Sortclass.

We give also a few handy definitions and lemmas for any ordinal notation.

Section Definitions.

Context {A:Type} {lt : relation A} {cmp : Compare A} {on: ON lt cmp}.

#[using="All"] Definition ON_t := A.

#[using="All"] Definition ON_compare : A -> A -> comparison := compare.

#[using="All"] Definition ON_lt := lt.

#[using="All"] Definition ON_le: relation A := leq lt.

#[using="All"]

Definition measure_lt {B : Type} (m : B -> A) : relation B :=

fun x y => ON_lt (m x) (m y).

#[using="All"]

Lemma wf_measure {B : Type} (m : B -> A) :

well_founded (measure_lt m).

#[using="All"]

Definition ZeroLimitSucc_dec :=

forall alpha,

{Least alpha} +

{Limit alpha} +

{beta: A | Successor alpha beta}.

(** The segment called [O alpha] in Schutte's book *)

#[using="All"]

Definition bigO (a: A) : Ensemble A := fun x: A => lt x a.

End Definitions.

Infix "o<" := ON_lt : ON_scope.

54CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Infix "o<=" := ON_le : ON_scope.

Infix "o?=" := ON_compare (at level 70) : ON_scope.

Remark 3.1 The infix notations o< and o<= are defined in order to make ap-
parent the distinction between the various notation scopes that may co-exist in
a same statement. So the infix < and <= are reserved to the natural numbers. In
mathematical formulas, however, we still use < and ≤ for inequalities between
ordinals.

3.4 Example: the ordinal ω
The simplest example of ordinal notation is built over the type nat of Coq’s
standard library. We just have to apply already proven lemmas about Peano
numbers.
From Library OrdinalNotations.ON_Omega

#[global] Instance Omega_comp : Comparable Peano.lt compare_nat.

Proof.

split.

- apply Nat.lt_strorder.

- apply Nat.compare_spec.

Qed.

#[global] Instance Omega : ON Peano.lt compare_nat.

Proof.

split.

- apply Omega_comp.

- apply Wf_nat.lt_wf.

Qed.

#[local] Open Scope ON_scope.

Compute 6 o?= 9.

= Lt

: comparison

3.5 Sum of two ordinal notations
Let NA and NB be two ordinal notations, on the respective types A and B.

We consider a new strict order on the disjoint sum of the associated types, by
putting all elements of A before the elements of B (thanks to Standard Library’s
relation operator le_AsB).
From Library Relations.Relation_Operators.

Inductive

le_AsB (A B : Type) (leA : A -> A -> Prop) (leB : B -> B -> Prop)

: A + B -> A + B -> Prop :=

| le_aa : forall x y : A, leA x y -> le_AsB A B leA leB (inl x) (inl y)

../theories/html/hydras.OrdinalNotations.ON_Omega.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html

3.5. SUM OF TWO ORDINAL NOTATIONS 55

| le_ab : forall (x : A) (y : B), le_AsB A B leA leB (inl x) (inr y)

| le_bb : forall x y : B, leB x y -> le_AsB A B leA leB (inr x) (inr y)

From Library OrdinalNotations.ON_plus

Section Defs.

Context `(ltA: relation A)

(cmpA : Compare A)

(NA: ON ltA cmpA).

Context `(ltB: relation B)

(cmpB : Compare B)

(NB: ON ltB cmpB).

Definition t := (A + B)%type.

Arguments inl {A B} _.

Arguments inr {A B} _.

Definition lt : relation t := le_AsB _ _ ltA ltB.

In order to build an instance of Comparable, we have to define a correct
comparison function.

#[global] Instance compare_plus : Compare t :=

fun (alpha beta: t) =>

match alpha, beta with

inl _, inr _ => Lt

| inl a, inl a' => compare a a'

| inr b, inr b' => compare b b'

| inr _, inl _ => Gt

end.

Lemma compare_correct alpha beta :

CompSpec eq lt alpha beta (compare alpha beta).

(* ... *)

#[global] Instance plus_comp : Comparable lt compare_plus.

Proof. split; [apply lt_strorder | apply compare_correct]. Qed.

Standard library’s lemma Wellfounded.Disjoint_Union.wf_disjoint_sum is
applied to prove that our order lt is well-founded, allowing us to build an
instance of ON:

Lemma lt_wf : well_founded lt.

Proof.

destruct NA, NB; apply wf_disjoint_sum; [apply ON_wf | apply ON_wf0].

Qed.

#[global] Instance ON_plus : ON lt compare_plus.

Proof. split; [apply plus_comp | apply lt_wf]. Qed.

../theories/html/hydras.OrdinalNotations.ON_plus.html

56CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

3.5.1 Example: The ordinal ω + ω

The ordinal ω+ω (also known as ω×2) may be represented as the concatenation
of two copies of ω (Figure 3.2). It is also represented by the two first lines of
Figure 3.1. We define this notation in Coq as an instance of ON_plus.

•
0

•
1

•
2

. . . •
n

•
n+ 1

. . . •
0

ω
•
1

ω + 1

•
2

ω + 2
. . . •

p

ω + p

. . .

Figure 3.2: ω + ω

From Module OrdinalNotations.ON_Omega_plus_omega

#[global] Instance compare_nat_nat : Compare t :=

compare_plus compare_nat compare_nat.

#[global] Instance Omega_plus_Omega: ON _ compare_nat_nat :=

ON_plus Omega Omega.

Definition t := ON_t.

Compute inl 42 o?= inr 0.

Example ex1 : inl 7 o< inr 8.

Proof. apply compare_lt_iff. trivial. Qed.

We can now define abbreviations. For instance, the finite ordinals are rep-
resented by terms built with the constructor inl, and the first infinite ordinal
ω by the term (inr 0).

Definition fin (i:nat) : t := inl i.

Coercion fin : nat >-> t.

Notation omega := (inr 0:ON_t).

Compute fin 8 o?= omega.

= Lt

: comparison

Lemma lt_omega alpha :

alpha o< omega <-> exists n:nat, alpha = fin n.

3.6 Limits and successors
Let us look again at our implementation of ω + ω. We can classify its elements
into three categories:

../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html

3.6. LIMITS AND SUCCESSORS 57

• The least ordinal, (inl 0), also known as (fin 0).

• The first infinite ordinal ω.

• The remaining ordinals, either of the form (inl (S i)) or (inr (S i)) (in
black on Figure 3.1), called successor ordinals.

3.6.1 Definitions
It would be interesting to specify at the most generic level, what is a zero, a
successor or a limit ordinal. Let < be a strict order on a type A.

• A least element is a minorant (in the large sense) of the full set on A,

• y is a successor of x if x < y and there is no element between x and y.
We will also say that x is a predecessor of y.

• x is a limit if x is not a least element, and for any y such that y < x, there
exists some z such that y < z < x.

The following definitions are in Library Prelude.MoreOrders.

Section Defs.

Variables (A : Type)

(lt: relation A).

#[local] Infix "<" := lt.

#[local] Infix "<=" := (leq lt).

Definition Least {sto : StrictOrder lt} (x : A):=

forall y, x <= y.

Definition Successor {sto : StrictOrder lt} (y x : A):=

x < y /\ (forall z, x < z -> z < y -> False).

Definition Limit {sto : StrictOrder lt} (x:A) :=

(exists w:A, w < x) /\

(forall y:A, y < x -> exists z:A, y < z /\ z < x).

Definition Omega_limit

{sto : StrictOrder lt} (s: nat -> A) (x:A) :=

(forall i: nat, s i < x) /\

(forall y, y < x -> exists i:nat, y < s i).

Exercise 3.1 Prove, that, in any ordinal notation system, every ordinal has at
most one predecessor, and at most one successor.

You may start this exercise with the file exercises/ordinals/predSuccUnic-
ity.v.

Exercise 3.2 Prove, that, in any ordinal notation system, if β is a successor of
α, then for any γ, γ < β implies γ ≤ α.

You may start this exercise with the file exercises/ordinals/lt_succ_le.v.

../theories/html/hydras.Prelude.MoreOrders.html
https://github.com/coq-community/hydra-battles/blob/master/exercises/ordinals/predSuccUnicity.v
https://github.com/coq-community/hydra-battles/blob/master/exercises/ordinals/predSuccUnicity.v
https://github.com/coq-community/hydra-battles/blob/master/exercises/ordinals/lt_succ_le.v

58CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

3.6.2 Limits and successors in ω + ω

Using the definitions above, we can prove the following lemma:
From Module OrdinalNotations.ON_Omega_plus_omega

Lemma limit_iff (alpha : t) : Limit alpha <-> alpha = omega.

Regarding successors, let us define the following function and prove its cor-
rectness:

Definition succ (alpha : t) :=

match alpha with

inl n => inl (S n)

| inr n => inr (S n)

end.

Lemma succ_correct alpha beta :

Successor beta alpha <-> beta = succ alpha.

We can also check whether an ordinal is a successor by a simple computation:

Definition succb (alpha: t) : bool

:= match alpha with

| inr (S _) | inl (S _) => true

| _ => false

end.

Lemma succb_correct (alpha: t) :

succb alpha <-> exists beta: t, alpha = succ beta.

Finally, the nature of any ordinal is decidable (inside this notation system) :
From Module OrdinalNotations.ON_Omega_plus_omega

Definition Zero_limit_succ_dec : ON_Generic.ZeroLimitSucc_dec.

(* ... *)

3.7 Product of ordinal notations
Let NA and NB be two ordinal notations, on the respective ordered types A and
B. The product of NA and NB is considered as the concatenation of B copies of
A, ordered by the lexicographic order on B ×A.

In Coq, we build an instance of class ON through a sequence of steps as for
the sum of ordinal notations.
From Module OrdinalNotations.ON_mult

Section Defs.

Context `(ltA: relation A)

(cmpA : Compare A)

(NA: ON ltA cmpA)

../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html
../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html
../theories/html/hydras.OrdinalNotations.ON_mult.html

3.8. THE ORDINAL ω2 59

`(ltB : relation B)

(cmpB : Compare B)

(NB: ON ltB cmpB).

Definition t := (B * A)%type.

Definition lt : relation t := lexico ltB ltA.

Definition le := clos_refl _ lt.

#[global] Instance compare_mult : Compare t :=

fun (alpha beta: t) =>

match compare (fst alpha) (fst beta) with

| Eq => compare (snd alpha) (snd beta)

| c => c

end.

#[global] Instance mult_comp: Comparable lt compare_mult.

Proof.

split.

- apply lt_strorder.

- apply compare_correct.

Qed.

#[global] Instance ON_mult: ON lt compare_mult.

Proof.

split.

- apply mult_comp.

- apply lt_wf.

Qed.

End Defs.

3.8 The ordinal ω2

The ordinal ω2 (also called φ0(2), see Chap. 8), is an instance of the multipli-
cation presented in the preceding section.
From Module OrdinalNotations.ON_Omega2

#[global] Instance compare_omega2 : Compare ON_mult.t :=

compare_mult compare_nat compare_nat.

#[global] Instance Omega2: ON _ compare_omega2 := ON_mult Omega Omega.

Definition t := ON_t.

Notation omega := (1,0).

Definition zero: t := (0,0).

Definition fin (i:nat) : t := (0,i).

Coercion fin : nat >-> t.

Example ex1 : (5,8) o< (5,10).

Proof. right; auto with arith. Qed.

../theories/html/hydras.OrdinalNotations.ON_Omega2.html

60CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

3.8.1 Arithmetic on ω2

3.8.1.1 Successor

The successor of any ordinal is defined by a simple pattern-matching.

Definition succ (alpha : t) := (fst alpha, S (snd alpha)).

This function is proved to be correct w.r.t. the Successor predicate.

Lemma succ_ok alpha beta :

Successor beta alpha <-> beta = succ alpha.

(* ... *)

Lemma lt_succ_le alpha beta :

alpha o< beta <-> succ alpha o<= beta.

(* ... *)

Lemma lt_succ alpha : alpha o< succ alpha.

Proof.

destruct alpha; right; cbn; abstract lia.

Qed.

3.8.1.2 Addition

We can define on Omega2 an addition which extends the addition on nat. Please
note that this operation is not commutative:

Definition plus (alpha beta : t) : t :=

match alpha,beta with

| (0, b), (0, b') => (0, b + b')

| (0,0), y => y

| x, (0,0) => x

| (0, _b), (S n', b') => (S n', b')

| (S n, b), (S n', b') => (S n + S n', b')

| (S n, b), (0, b') => (S n, b + b')

end.

Infix "+" := plus : ON_scope.

Lemma plus_compat (n p: nat) :

fin (n + p)%nat = fin n + fin p.

Proof. destruct n; reflexivity. Qed.

Compute 3 + omega.

= omega

: t

Compute omega + 3.

= (1, 3)

: t

3.8. THE ORDINAL ω2 61

Example non_commutativity_of_plus: omega + 3 <> 3 + omega.

Proof. discriminate. Qed.

3.8.1.3 Finite multiplication

The restriction of ordinal multiplication to the segment [0, ω2) is not a total
function. For instance ω × ω = ω2 is outside the set of represented values.
Nevertheless, we can define two operations mixing natural numbers and ordinals.

(** multiplication of an ordinal by a natural number *)

Definition mult_fin_r (alpha : t) (p : nat): t :=

match alpha, p with

| (0,0), _ => zero

| _, 0 => zero

| (0, n), p => (0, n * p)

| (n, b), n' => (n * n', b)

end.

Infix "*" := mult_fin_r : ON_scope.

(** multiplication of a natural number by an ordinal *)

Definition mult_fin_l (n:nat)(alpha : t) : t :=

match n, alpha with

| 0, _ => zero

| _, (0,0) => zero

| n , (0,n') => (0, (n*n')%nat)

| n, (n',p') => (n', (n * p')%nat)

end.

Example e1 : (omega * 7 + 15) * 3 = omega * 21 + 15.

Proof. reflexivity. Qed.

Example e2 : mult_fin_l 3 (omega * 7 + 15) = omega * 7 + 45.

Proof. reflexivity. Qed.

Multiplication with a finite ordinal and addition are related through the
following lemma:

Lemma unique_decomposition (alpha: t) :

exists! i j: nat, alpha = omega * i + j.

Proof.

destruct alpha as [i j]; exists i; split.

i, j: nat

exists ! j0 : nat, (i, j) = omega * i + j0

i, j: nat

forall x' : nat,

(exists ! j0 : nat, (i, j) = omega * x' + j0) ->

i = x'

62CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

(* ... *)

Qed.

3.8.1.4 Example: Ackermann function

The famous Ackermann function can be defined with the Equations plug-in [SM19],
with a measure towards ω2.

From OrdinalNotations.ON_Omega2.

From Equations Require Import Equations.

Section A_def.

Let m (x : nat * nat): t := omega * fst x + snd x.

#[local] Instance WF : WellFounded (measure_lt m):=

wf_measure m.

Equations A (p : nat * nat) : nat by wf p (measure_lt m):=

A (0, j) := S j;

A (S i, 0) := A(i, 1);

A (S i, S j) := A(i, A(S i, j)).

Next Obligation.

(* ... *)

3.8.2 Yet another proof of impossibility
In Sect. 2.4.3 on page 45, we proved that there exists no variant from Hydra to
(nat,<) (i.e. the ordinal ω) for proving the termination of all hydra battles.
We prove now that the ordinal ω2 is also insufficient for this purpose.

The proof we are going to comment has exactly the same structure as in Sec-
tion 2.4.3. Nevertheless, the proof of technical lemmas is a little more complex,
due to the structure of the lexicographic order on N×N. Consider for instance
that there exists an infinite number of ordinals between ω and ω × 2.

The detailed proof script is in the file theories/ordinals/Hydra/Omega2_Small.v.

3.8.2.1 Preliminaries

Let us assume there is a variant from Hydra into ω2 for proving the termination
of all hydra battles.

From Module Hydra.Omega2_Small

Section Impossibility_Proof.

Variable m : Hydra -> rep Omega2.

Context

(Hvar: Hvariant Omega2 free m).

We follow the same pattern as in Sect. 2.4.3. First, we define an injection ι
from type ON_Omega2.t into Hydra, by associating to each ordinal ω×i+j = (i, j)
the hydra with i branches of length 2 and j branches of length 1.

../theories/html/hydras.OrdinalNotations.ON_Omega2.html
https://github.com/coq-community/hydra-battles/blob/master/theories/ordinals/Hydra/Omega2_Small.v
../theories/html/hydras.Hydra.Omega2_Small.html

3.8. THE ORDINAL ω2 63

From Module Hydra.Omega2_Small

Let iota (p: ON_Omega2.t) :=

node (hcons_mult (hyd1 head) (fst p)

(hcons_mult head (snd p) hnil)).

For instance, Figure 3.3 shows the hydra associated to the ordinal (3, 5),
a.k.a. ω × 3 + 5.

•

• • •

Figure 3.3: The hydra ι(ω × 3 + 5)

Like in Sect. 2.4.3, we build a hydra out of the range of iota (represented in
Fig. 3.4).

•

•

Figure 3.4
The hydra big_h.

Let big_h := hyd1 (hyd2 head head).

In a second step, we build a “smaller” hydra2.

Let small_h := iota (m big_h).

Like in Sect. 2.4.3, we prove the inequalitym big_h o<=m small_h o<=m big_h,
which is obviously false.

3.8.2.2 Proof of the inequality m small_h o< m big_h

In order to prove the inequality m_lt: m small_h o< m big_h, it suffices to build
a battle transforming big_h into small_h.

First we prove that small_h is reachable from big_h in one or two steps. Let
us decompose m big_h as (i, j). If j = 0, then one round suffices to transform
big_h into ι(i, j). If j > 0, then a first round transforms big_h into ι(i + 1, 0)
and a second round into ι(i, j). So, we have the following result.

2With respect to the measure m.

../theories/html/hydras.Hydra.Omega2_Small.html#iota

64CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Lemma big_to_small : big_h -+-> small_h.

Since m is a variant, we infer the following inequality:

Corollary m_lt : m small_h o< m big_h.

Proof. apply m_strict_mono with (1:=Hvar) (2:=big_to_small). Qed.

3.8.2.3 Proof of the inequality m big_h o<= m small_h

The proof of the inequality m big_h o<= m small_h is quite more complex than
in Sect 2.4.3. If we consider any ordinal α = (i, j), where i > 0, there exists
an infinite number of ordinals strictly less than α, and there exists an infinite
number of battles that start from ι(α). Indeed, at any configuration ι(k, 0),
where k > 0, the hydra can freely choose any replication number. Intuitively,
the measure of such a hydra must be large enough for taking into account all the
possible battles issued from that hydra. Let us now give more technical details.

The first steps of our proof start a well-founded induction over ω2.

Lemma m_ge : m big_h o<= m small_h.

Proof.

unfold small_h;

pattern (m big_h);

apply well_founded_induction with (R := ON_lt) (1:= ON_wf);

intros (i,j) IHij.

m: Hydra -> Omega2

Hvar: Hvariant Omega2 free m

big_h: Hydra

iota: t -> Hydra

small_h: Hydra

i, j: nat

IHij: forall y : Omega2,

y o< (i, j) -> y o<= m (iota y)

(i, j) o<= m (iota (i, j))

A case analysis on i and j leads us to consider three cases :

• i = j = 0: the inequality is trivial.

• i = 1+ l, j = 0 ((i, j) is a limit ordinal): By the induction hypothesis IHij,
(l, k)o<=m(ι(l, k)) for any k. But (by the rules of the hydra game), ι(i, 0)
is transformed into any ι(l, k) in one round. Thus m(ι(l, k)) < m(ι(i, 0))
for any k. Therefore, (l, k) < m(ι(i, 0)) for any k, thus (i, 0) o<=m(ι(i, 0)).

• j = l + 1 ((i, j) is a successor). We apply the induction hypothesis to the
pair (i, l).

Please look at the proof script for more details.

(* ... *)

Qed.

3.9. A NOTATION FOR FINITE ORDINALS 65

3.8.2.4 End of the proof

From m_ge, we get m big_h o<= m small_h = m(iota (m big_h)) . Since <
is a strict order (irreflexive and transitive), this inequality is incompatible with
the strict inequality m small_h o< m big_h (lemma m_lt).
From Module Hydra.Omega2_Small

Theorem Impossible : False.

Proof.

destruct (StrictOrder_Irreflexive (R:=ON_lt) (m big_h));

eapply le_lt_trans; [apply m_ge | apply m_lt].

Qed.

End Impossibility_Proof.

Exercise 3.3 Prove that there exists no variant m from Hydra into ω2 for prov-
ing the termination of all standard battles.

Remark 3.2 We prove in Chapter 5 a generalization of the impossibility lem-
mas of Sect. 2.4.3 and this section, with the same proof structure, but with
much more complex technical details.

3.9 A notation for finite ordinals
Let n be some natural number. The segment associated with n is the interval
[0, n) = {0, 1, . . . , n− 1}. One may represent the ordinal n by a sigma type.
From Module OrdinalNotations.ON_Finite

Definition t (n:nat) := {i:nat | Nat.ltb i n}.

Definition lt {n:nat} : relation (t n) :=

fun alpha beta => Nat.ltb (proj1_sig alpha) (proj1_sig beta).

3.9.0.1 Examples

For instance, let us build two elements of the segment [0, 7), i.e. two inhabitants
of type (t 7), and prove a simple inequality (see Fig. 3.5).

•
0

•
1

•
2

•
3

•
4

•
5

•
6

α1 β1

Figure 3.5: The segment O7

Program Example alpha1 : t 7 := 2.

Program Example beta1 : t 7 := 5.

../theories/html/hydras.Hydra.Omega2_Small.html#Impossible
../theories/html/hydras.OrdinalNotations.ON_Finite.html

66CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Example i1 : lt alpha1 beta1.

Proof. reflexivity. Qed.

Note that the type (t 0) is empty, and that, for any natural number n, n
does not belong to (t n).

Lemma t0_empty (alpha: t 0): False.

Proof.

destruct alpha ; discriminate.

Qed.

Definition bad : t 10.

exists 10.

10 <? 10

Abort.

3.9.0.2 Comparison function

In order to build an instance of ON, we define a comparison function, then prove
its correctness.

#[global] Instance compare_fin {n:nat} : Compare (t n) :=

fun (alpha beta : t n) => Nat.compare (proj1_sig alpha) (proj1_sig beta).

Lemma compare_correct {n} (alpha beta : t n) :

CompSpec eq lt alpha beta (compare alpha beta).

Remark 3.3 The proof of compare_correct uses a well-known pattern of Coq.
Let us consider the following subgoal.

n, x0: nat

i, i0: x0 <? S n

exist (fun i : nat => i <=? n) x0 i =

exist (fun i : nat => i <=? n) x0 i0

Applying the tactic f_equal generates a simpler subgoal.

f_equal.

n, x0: nat

i, i0: x0 <? S n

i = i0

We have now to prove that there exists at most one proof of (Nat.ltb x0 (S

n)). This is not obvious, but a consequence of the following lemma of library
Coq.Logic.Eqdep_dec.

eq_proofs_unicity_on :

forall (A : Type) (x : A),

(forall y : A, x = y \/ x <> y) ->

forall (y : A) (p1 p2 : x = y), p1 = p2

https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Eqdep_dec.html

3.9. A NOTATION FOR FINITE ORDINALS 67

Thus unicity of proofs of Nat.ltb x0 (S n) comes from the decidability of
equality on type bool. This is why we used the boolean function Nat.ltb instead
of the inductive predicate Nat.lt in the definition of type t n (see page 65). For
more information about this pattern, please look at the numerous mailing lists
and FAQs on Coq).

apply eq_proofs_unicity_on; decide equality.

(* ... *)

Remark 3.4 Please note that attempting to compare a term of type (t n) with
a term of type (t p) leads to an error if n and p are not convertible.

Program Example gamma1 : t 8 := 7.

Fail Goal alpha1 o< gamma1.

The command has indeed failed with message:

The term "gamma1" has type "t 8"

while it is expected to have type "t 7".

3.9.0.3 Building an instance of ON

Applying lemmas of the libraries Coq.Wellfounded.Inverse_Image,
Coq.Wellfounded.Inclusion, and Coq.Arith.Wf_nat, we prove that our relation
lt is well founded.

Lemma lt_wf (n:nat) : well_founded (@lt n).

Now we can build our instance of OrdinalNotation.

#[global] Instance sto n : StrictOrder (@lt n).

#[global] Instance comp n: Comparable (@lt n) compare.

#[global] Instance FinOrd n : ON (@lt n) compare.

Remark 3.5 It is important to keep in mind that the integer n is not an “ele-
ment” of FinOrd n. In set-theoretic presentations of ordinals, the set associated
with the ordinal n is {0, 1, . . . , n − 1}. In our formalization, the interpretation
of an ordinal as a set is realized by the function bigO (see Section3.3.1.2 on
page 53).

Remark 3.6 There is no interesting arithmetic on finite ordinals, since func-
tions like successor, addition, etc., cannot be represented in Coq as total func-
tions.

3.9.0.4 See also …

G Finite ordinals are also formalized in SSReflect/MathComp [MT18]. In
Module gaia_hydras.ON_gfinite, we build an instance of class ON.

../theories/html/gaia_hydras.ON_gfinite.html

68CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Definition finord_lt (n:nat) (alpha beta: 'I_n): bool :=

(alpha < beta)%N.

#[global] Instance finord_compare (n:nat) : Compare ('I_n) :=

fun alpha beta => Nat.compare alpha beta.

#[global] Instance finord_ON n : ON (@finord_lt n) (@finord_compare n).

#[program] Example o_33_of_42: 'I_42 := @Ordinal 42 33 _.

#[program] Example o_36_of_42: 'I_42 := @Ordinal 42 36 _.

Compute compare o_33_of_42 o_36_of_42.

= Lt

: comparison

3.10 Comparing two ordinal notations
It is sometimes useful to compare two ordinal notations with respect to expres-
sive power (the segment of ordinals they represent).

The following class specifies a strict inclusion of segments. The ordinal
notation OA describes a segment [0, α), and OB a larger segment (which contains
a notation for α, whilst α is not represented in OA) (like in Fig. 3.6). We require
also the comparison functions of the two notation systems to be compatible.

ω •
0

•
1

•
2

. . .

ω + ω •
0

•
1

•
2

. . . •
ω

•
ω + 1

. . .

ι ι ι ι

Figure 3.6: ω is a sub-segment of ω + ω

From ON_Generic.

Class SubON

`(OA: @ON A ltA compareA)

`(OB: @ON B ltB compareB)

(alpha: B) (iota: A -> B):=

{

SubON_compare: forall x y : A,

compareB (iota x) (iota y) = compareA x y;

SubON_incl : forall x, ltB (iota x) alpha;

SubON_onto : forall y, ltB y alpha -> exists x:A, iota x = y}.

For instance, we prove that Omega is a sub-notation of Omega_plus_Omega (with
ω as the first “new” ordinal, and fin as the injection).

From Module OrdinalNotations.ON_Omega_plus_omega

../theories/html/hydras.OrdinalNotations.ON_Generic.html
../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html

3.11. COMPARING AN ORDINAL NOTATION WITH SCHÜTTE’S MODEL69

#[global] Instance Incl : SubON Omega Omega_plus_Omega omega fin.

We can also show that, if i < j, then the segment [0, i) is a “sub-segment”
of [0, j). Since the terms (t i) and (t j) are not convertible, we consider a “cast”
function ι from (t i) into (t j), and prove that this function is a monotonous
bijection from (t i) to the segment [0, i) of (t j).

From Module OrdinalNotations.ON_Finite

Section Inclusion_ij.

Variables i j : nat.

Hypothesis Hij : i < j.

Remark Ltb_ij : Nat.ltb i j.

#[program] Definition iota_ij (alpha: t i) : t j := alpha.

Let b : t j := exist _ i Ltb_ij.

#[global]

Instance F_incl_ij: SubON (FinOrd i) (FinOrd j) b iota_ij.

Lemma iota_compare_commute alpha beta:

compare alpha beta =

compare (iota_ij alpha) (iota_ij beta).

Lemma iota_mono : forall alpha beta,

lt alpha beta <->

lt (iota_ij alpha) (iota_ij beta).

End Inclusion_ij.

Exercise 3.4 Prove that Omega_plus_Omega cannot be a sub-notation of Omega.

Project 3.1 Adapt the definition of Hvariant (Sect. 2.4.2) in order to have an
ordinal notation as argument. Prove that if OA is a sub-notation of OB , then
any variant defined on OA can be automatically transformed into a variant on
OB .

3.11 Comparing an ordinal notation with Schütte’s
model

Finally, it may be interesting to compare an ordinal notation with the more
theoretical model from Schütte (well, at least with our formalization of that
model). This would be a relative proof of correctness of the considered ordinal
notation.

The following class specifies that a notation OA describes a segment [0, α),
where α is a countable ordinal à la Schütte.

Class ON_correct `(alpha : Ord)

`(OA : @ON A ltA compareA)

(iota : A -> Ord) :=

../theories/html/hydras.OrdinalNotations.ON_Finite.html

70CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

{ ON_correct_inj : forall a, lt (iota a) alpha;

ON_correct_onto : forall beta, lt beta alpha ->

exists b, iota b = beta;

On_compare_spec : forall a b:A,

match compareA a b with

| Datatypes.Lt => lt (iota a) (iota b)

| Datatypes.Eq => iota a = iota b

| Datatypes.Gt => lt (iota b) (iota a)

end

}.

For instance, the following theorem tells that Epsilon0, our notation system
for the segment [0, ε0) is a correct implementation of the theoretically defined
ordinal ε0 (see chapter 8 for more details).
From Module Schutte.Correctness_E0

#[global] Instance Epsilon0_correct :

ON_correct epsilon0 Epsilon0 (fun alpha => inject (cnf alpha)).

Project 3.2 Same work, but replace Schütte’s model with Gaia’s.

Project 3.3 When you have read Chapter 8, prove that the sum of two ordinal
notations ON_plus implements the addition of ordinals.

3.12 Isomorphism of ordinal notations
In some cases we want to show that two notation systems describe the same
segment (for instance [0, 3 + ω) and [0, ω)). For this purpose, one may prove
that the two notation systems are order-isomorphic.

Class ON_Iso

`(OA : @ON A ltA compareA)

`(OB : @ON B ltB compareB)

(f : A -> B) (g : B -> A):=

{

iso_compare :forall x y : A,

compareB (f x) (f y) = compareA x y;

iso_inv1 : forall a, g (f a)= a;

iso_inv2 : forall b, f (g b) = b

}.

Exercise 3.5 Let i be some natural number. Prove that the notation systems
Omega and (ON_plus (OrdFin i) Omega) are isomorphic.

Note: This property reflects the equality i + ω = ω, that we prove also in
larger notation systems, as well as in Schütte’s model. This exercise is partially
solved for i = 3 (in OrdinalNotations.Example_3PlusOmega).

../theories/html/hydras.Schutte.Correctness_E0.html
../theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html

3.13. OTHER ORDINAL NOTATIONS 71

Project 3.4 This exercise is about the non-commutativity of the multiplication
of ordinals, reflected in ordinal notations.

For instance, the elements of the product (ON_mult Omega (FinOrd 3)) are
ordered as follows.

(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), . . . , (1, 0),(1, 1), (1, 2), . . . , (2, 0), (2, 1), (2, 2), . . .

Note that the elements of (ON_mult (FinOrd 3) Omega) are differently ordered
(without limit ordinals):

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2), (0, 3), . . .

Prove formally that (ON_mult (FinOrd i) Omega) is isomorphic to Omega whilst
Omega is a sub-notation of (ON_mult Omega (FinOrd i)), for any strictly positive
i.

Note: Like Exercise 3.5, this project corresponds to the [in]equalities i+ω =
ω < ω + i, for any natural number i.

Project 3.5 Consider two isomorphic ordinal notations OA and OB. Prove that,
if OA [resp. OB] is a correct implementation of α [resp. β], then α = β.

Project 3.6 Add to the class ON the requirement that for any α it is decidable
whether α is 0, a successor or a limit ordinal.

Hint: Beware of the instances associated with sum and product of notations!
You may consider additional fields to make the sum and product of notations
“compositional”.

Project 3.7 Reconsider the class ON, with an equivalence instead of Leibniz
equality.

3.13 Other ordinal notations
Project 3.8 Let NA be a notation system for ordinals strictly less than α, with
the strict order (A,<A). Please build the notation system ON_Expl NA, on the
type of multisets of elements of A (or, if preferred, the type of non-increasing
finite sequences on A, provided with the lexicographic ordering on lists).

For instance, let us take NA = Omega, and take α = 〈4, 4, 2, 1, 0〉, β =
〈4, 3, 3, 3, 3, 3, 2〉, and γ = 〈5〉. Then β < α < γ.

In contrast the list 〈5, 6, 3, 3〉 is not non-increasing (i.e. sorted w.r.t. ≥), so
it is not to be considered.

Note that if the notation NA implements the ordinal α, the new notation
ωNA must implement the ordinal φ0(α), a.k.a. ωα (see chapter 8)

Remark 3.7 The set of ordinal terms in Cantor normal form (see Chap. 4)
and in Veblen normal form (see Gamma0.Gamma0) are shown to be ordinal
notation systems, but there is a lot of work to be done in order to unify ad-hoc
definitions and proofs which were written before the definition of the ON type
class.

In Section 4.3 on page 91, we present a notation system for the ordinal ωω

as a refinement of the ordinal notation for ε0.

../theories/html/hydras.Gamma0.Gamma0.html

72CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Chapter 4

The Ordinal ε0

In this chapter, we adapt to Coq the well-known proof [KP82] that Hercules
eventually wins every battle, whichever the strategy of each player. In other
words, we present a formal and self-contained proof of termination of all [free]
hydra battles. First, we take from Manolios and Vroon [MV05] a representation
of the ordinal ε0 as terms in Cantor normal form. Then, we define a variant for
hydra battles as a measure that maps any hydra to some ordinal strictly less
than ε0.

4.1 The ordinal ε0
The ordinal ε0 is the least ordinal number that satisfies the equation α = ωα,
where ω is the least infinite ordinal1 . Thus, we can intuitively consider ε0 as
an infinite ω-tower.

4.1.1 Cantor normal form
Any ordinal strictly less that ε0 can be finitely represented by a unique Cantor
normal form, that is, an expression which is a sum ωα1 × n1 + ωα2 × n2 +
· · · + ωαp × np where p ∈ N, all the αi are ordinals in Cantor normal form,
α1 > α2 > αp and all the ni are positive integers.

An example of Cantor normal form is displayed in Fig 4.1: Note that any
ordinal of the form ω0 × i+ 0 is just written i.

ω(ωω +ω2×8+ω) + ωω + ω4 + 6

Figure 4.1: An ordinal in Cantor normal form

In the rest of this section, we define an inductive type for representing in Coq

all the ordinals strictly less than ε0, then extend some arithmetic operations to
this type, and finally prove that our representation fits well with the expected

1For a precise — i.e. mathematical — definition of ωα, please see Sect. 8.6 on page 174.

73

74 CHAPTER 4. THE ORDINAL EPSILON0

mathematical properties: the order we define is a well order, and the decompo-
sition into Cantor normal form is consistent with usual definition of ordinals,
for instance in Gaia [GQS], Schütte’s book [Sch77], or larger ordinal notations 9
on page 185.

Remark Unless explicitly mentioned, the term “ordinal” will be used instead
of “ordinal strictly less than ε0” (except in Chapter 8 where it stands for “count-
able ordinal”).

4.1.2 A data type for ordinals in Cantor normal form
Let us define an inductive type whose constructors are respectively associated
with the ways to build Cantor normal forms:

• the ordinal 0

• the construction (α, n, β) 7→ ωα × (n+ 1) + β (n ∈ N)

From Module Epsilon0.T1

Inductive T1 : Set :=

| zero

| cons (alpha : T1) (n : nat) (beta : T1) .

4.1.2.1 Example

For instance, the ordinal ωω + ω3 × 5 + 2 is represented by the following term
of type T1:

Example alpha_0 : T1 :=

cons (cons (cons zero 0 zero)

0

zero)

0

(cons (cons zero 2 zero)

4

(cons zero 1 zero)).

cons

cons

cons

zero 0 zero

0 zero

0 cons

cons

zero 2 zero

4 cons

zero 1 zero

Figure 4.2: The tree-like representation of the ordinal ωω + ω3 × 5 + 2

../theories/html/hydras.Epsilon0.T1.html#T1

4.1. THE ORDINAL ε0 75

4.1.2.1.1 Remark For simplicity’s sake, we chose to forbid expressions of
the form ωα × 0 + β. Thus, the construction (cons α n β) is intended to rep-
resent the ordinal ωα × (n+1)+ β and not ωα × n+ β. In a future version, we
would like to replace the type nat with standard library’s type positive in T1’s
definition. But this replacement would take a lot of time …

4.1.2.1.2 Remark The name T1 we gave to this data-type is proper to this
development and refers to a hierarchy of ordinal notations. For instance, in
Library Gamma0.T2, the following type is used to represent ordinals strictly
less than Γ0, in Veblen normal form (see also [GQS, Sch77]).

Declare Scope T2_scope.

Delimit Scope T2_scope with t2.

Open Scope T2_scope.

Inductive T2 : Set :=

| zero : T2

| gcons : T2 -> T2 -> nat -> T2 -> T2.

4.1.3 About Gaia
G Chapter 7 on page 141 describes the present state of a project of making

compatible the libraries Hydra-battles and Gaia. At present, both libraries
contain their own version of the inductive type T1, with the same base name for
the constructors.

Inductive T1 : Set :=

zero : T1

| cons : T1 -> nat -> T1 -> T1.

Thus, many examples of this and following chapters can be run in Gaia’s
context. We will signal any difference (notation, name) which may appear. A
closer integration (same data type and functions) is still in project.

Remark 4.1 In future releases, we plan to make some Hydra-battles identifiers
progressively deprecated, in favour of Gaia’s names.

4.1.4 Abbreviations
Some abbreviations may help to write more concisely complex ordinal terms.

4.1.4.1 Finite ordinals

For representing finite ordinals, i.e. natural numbers, we first introduce a nota-
tion for terms of the form n + 1, then define a coercion from type nat into T1.

(** The [(S n)]-th ordinal *)

Notation FS n := (cons zero n zero).

../theories/html/hydras.Gamma0.T2.html

76 CHAPTER 4. THE ORDINAL EPSILON0

Notation one := (FS 0).

(** the [n]-th (finite) ordinal *)

Definition T1nat (n:nat) := match n with 0 => zero | S p => FS p end.

Notation "\F n" := (T1nat n) (at level 29): t1_scope.

Coercion T1nat : nat >-> T1.

Example ten : T1 := 10.

G In gaia.ssete9, the n-th finite ordinal is also written \Fn. There is no
coercion in Gaia from nat to T1.

From gaia_hydras.HydraGaia_Examples.

Check \F 42.

\F 42

: T1

Fail Check (42 : T1).

The command has indeed failed with message:

The term "42" has type "nat"

while it is expected to have type "T1".

4.1.4.2 The ordinal ω

Since ω’s Cantor normal form is i.e. ωω0 × 1 + 0, we can define the following
abbreviation:

Notation T1omega := (cons (cons zero 0 zero) 0 zero).

Note that T1omega is not an identifier in Hydra-battles, thus any tactic like
unfold T1omega would fail.

G In gaia.ssete9, the ordinal ω is bound to the constant T1omega (not a
notation).

4.1.4.3 The ordinal ωα, a.k.a. φ0(α)

We provide also a notation for ordinals of the form ωα.

Notation phi0 alpha := (cons alpha 0 zero).

Remark 4.2 The name φ0 comes from ordinal numbers theory. In [Sch77],
Schütte defines φ0 as the ordering (i.e. enumerating) function of the set of
additive principal ordinals i.e. strictly positive ordinals α that verify ∀β <
α, β + α = α. For Schütte, ωα is just a notation for φ0(α). See also Chapter 8
of this document.

../theories/html/gaia_hydras.HydraGaia_Examples.html

4.1. THE ORDINAL ε0 77

G In gaia.ssete9 the identifier phi0 is bound to a plain constant (not a
notation).

4.1.4.4 The hierarchy of ω-towers:

The ordinal ε0, although not represented by a finite term in Cantor normal form,
is approximated by the sequence of ω-towers (see also Sect 8.6.3 on page 175).

From Module Epsilon0.T1

Fixpoint omega_tower (height:nat) : T1 :=

match height with

| 0 => one

| S h => phi0 (omega_tower h)

end.

Compute omega_tower 7.

= phi0 (phi0 (phi0 (phi0 (phi0 (phi0 T1omega)))))

: T1

For instance, Figure 4.3 represents the ordinal returned by the evaluation of
the term omega_tower 7.

ωωωωωωω

Figure 4.3: The ω-tower of height 7

4.1.5 Pretty-printing ordinals in Cantor normal form
Let us consider again the ordinal α0 defined in section 4.1.2.1 on page 74. If we
ask Coq to print its normal form, we get a hardly readable term of type T1.

Compute alpha_0.

= cons T1omega 0 (cons (FS 2) 4 (FS 1))

: T1

The following data type defines a more readable abstract syntax for ordinals
terms in Cantor normal form:

Declare Scope ppT1_scope.

Delimit Scope ppT1_scope with pT1.

Inductive ppT1 :=

| PP_fin (_ : nat)

| PP_add (_ _ : ppT1)

| PP_mult (_ : ppT1) (_ : nat)

../theories/html/hydras.Epsilon0.T1.html

78 CHAPTER 4. THE ORDINAL EPSILON0

| PP_exp (_ _ : ppT1)

| PP_omega.

Coercion PP_fin : nat >-> ppT1.

Notation "alpha + beta" := (PP_add alpha beta) : ppT1_scope.

Notation "alpha * n" := (PP_mult alpha n) : ppT1_scope.

Notation "alpha ^ beta" := (PP_exp alpha beta) : ppT1_scope.

Notation ω := PP_omega.

Check (ω ^ ω * 2 + 1)%pT1.

(ω ^ ω * 2 + 1)%pT1

: ppT1

The function pp: T1 -> ppT1 converts any closed term of type T1 into a
human-readable expression. For instance, let us convert the term alpha_0.

Compute pp alpha_0.

= (ω ^ ω + ω ^ 3 * 5 + 2)%pT1

: ppT1

G In gaia.T1Bridge, we define a variant of pp for pretty-printing terms of
type ssete9.CantorOrdinal.T1 (see Sect. 7.2.2.1 on page 144).

Project 4.1 Design tools for systematically pretty printing ordinal terms in
Cantor normal form.

4.1.6 Comparison between ordinal terms
In order to compare two terms of type T1, we define a recursive function compare

that maps two ordinal tems α and β to a value of type comparison. This type is
defined in Coq’s standard library Init.Datatypes and contains three construc-
tors: Lt (less than), Eq (equal), and Gt (greater than).

From Module Epsilon0.T1

#[global] Instance compare_T1 : Compare T1 :=

fix cmp (alpha beta:T1) :=

match alpha, beta with

| zero, zero => Eq

| zero, cons a' n' b' => Lt

| _ , zero => Gt

| (cons a n b),(cons a' n' b') =>

(match cmp a a' with

| Lt => Lt

../theories/html/gaia.T1Bridge.html
../theories/html/hydras.Epsilon0.T1.html#compare

4.1. THE ORDINAL ε0 79

| Gt => Gt

| Eq => (match n ?= n' with

| Eq => cmp b b'

| comp => comp

end)

end)

end.

Definition lt (alpha beta : T1) : Prop :=

compare alpha beta = Lt.

Notation le := (leq lt).

#[global] Instance t1_strorder: StrictOrder lt.

#[global] Instance: Comparable lt compare.

Please note that this definition of lt makes it easy to write proofs by com-
putation, as shown by the following examples.

Example E1 : lt (cons T1omega 56 zero) (omega_tower 3).

Proof. reflexivity. Qed.

Example E2 : ~ lt (omega_tower 3) (cons T1omega 5 (omega_tower 3))%t1.

Proof. discriminate. Qed.

G In Gaia, the strict order T1lt on ordinal terms is directly defined as a
boolean function (in SSReflect’s style).

Fixpoint T1lt x y {struct x} :=

if x is cons a n b then

if y is cons a' n' b' then

if a < a' then true

else if a == a' then

if (n < n')%N then true

else if (n == n') then b < b' else false

else false

else false

else if y is cons a' n' b' then true else false

where "x < y" := (T1lt x y) : cantor_scope.

Definition T1le (x y :T1) := (x == y) || (x < y).

Notation "x <= y" := (T1le x y) : cantor_scope.

Notation "x >= y" := (y <= x) (only parsing) : cantor_scope.

Notation "x > y" := (y < x) (only parsing) : cantor_scope.

In section 7.2.3.3 on page 145, we show that both definitions are mutually
equivalent.

80 CHAPTER 4. THE ORDINAL EPSILON0

4.1.6.1 A Predicate for Characterizing Normal Forms

Our data-type T1 allows us to write expressions that are not properly in Cantor
normal form as specified in Section 4.1. For instance, consider the following
term of type T1.

Example bad_term: T1 := cons 1 1 (cons T1omega 2 zero).

This term would have been written ω1 × 2+ ωω × 3 in the usual mathemat-
ical notation. We note that the exponents of ω are not in the right (strictly
decreasing) order. The following boolean function determines whether a given
ordinal term is well formed.
From Module Epsilon0.T1

Fixpoint nf_b (alpha : T1) : bool :=

match alpha with

| zero => true

| cons a n zero => nf_b a

| cons a n ((cons a' n' b') as b) =>

(nf_b a && nf_b b && (bool_decide (lt a' a)))%bool

end.

Definition nf alpha :Prop := nf_b alpha.

Compute nf_b alpha_0.

= true

: bool

Compute nf_b bad_term.

= false

: bool

G In Gaia, the boolean function which characterizes ordinal terms in normal
form is defined as follows:

Fixpoint T1nf x :=

if x is cons a _ b then [&& T1nf a, T1nf b & b < phi0 a]

else true.

In Sect. 7.2.3.6 on page 146, we show that Gaia’s T1nf is extensionally equiv-
alent with Hydra-battles’ nf.

4.1.7 Making normality implicit
We would like to get rid of terms of type T1 which are not in Cantor normal
form. A simple way to do this is to consider statements of the form forall

alpha: T1, nf alpha -> P alpha, where P is a predicate over type T1, like in
the following lemma 2.

2Ordinal addition is formally defined a little later (page 4.1.9.3)

../theories/html/hydras.Epsilon0.T1.html#nf_b

4.1. THE ORDINAL ε0 81

Lemma plus_is_zero alpha beta :

nf alpha -> nf beta ->

alpha + beta = zero -> alpha = zero /\ beta = zero.

But this style leads to clumsy statements, and generates too many subgoals
in interactive proofs (although often solved with auto or eauto).

One may encapsulate conditions of the form (nf α) in the most used predi-
cates. For instance, we introduce the restriction of lt to terms in normal form,
and provide a handy notation for this restriction.

From Module hydras.Prelude.Restriction

Definition restrict {A:Type}(E: Ensemble A)(R: relation A) :=

fun a b => E a /\ R a b /\ E b.

From Module Epsilon0.T1

Definition LT := restrict nf lt.

Infix "t1<" := LT : t1_scope.

Definition LE := restrict nf (leq lt).

Infix "t1<=" := LE : t1_scope.

For instance, in the following lemma, the condition that α is in normal form
is included in the condition α < 1.

Lemma LT_one alpha :

alpha t1< one -> alpha = zero.

Proof.

intros [H1 [H2 _]]; destruct alpha; auto.

alpha1: T1

n: nat

alpha2: T1

H1: nf (cons alpha1 n alpha2)

H2: lt (cons alpha1 n alpha2) one

cons alpha1 n alpha2 = zero

(* ... *)

Qed.

4.1.7.1 E0: a sigma-type for ε0
As we noticed in Sect. 4.1.6.1, the type T1 is not a correct ordinal notation,
since it contains terms that are not in Cantor normal form. In certain contexts
(for instance in Sections 6.2.4, 6.3, and 6.4), we need to define total recursive
functions on well-formed ordinal terms less than ε0, using the Equations plug-
in [SM19]. In order to define a type whose inhabitants represent just ordinals,
we build a type gathering a term of type T1 and a proof that this term is in
normal form.

From Module Epsilon0.E0

../theories/html/hydras.Prelude.Restriction.html
../theories/html/hydras.Epsilon0.T1.html#LT
../theories/html/hydras.Epsilon0.E0.html#E0

82 CHAPTER 4. THE ORDINAL EPSILON0

Class E0 : Type := mkord {cnf : T1; cnf_ok : nf cnf}.

Arguments cnf : clear implicits.

#[export] Hint Resolve cnf_ok : E0.

Many constructs : types, predicates, functions, notations, etc., on type T1

are adapted to E0.
First, we declare a notation scope for E0, then we redefine the predicates of

comparison.

Declare Scope E0_scope.

Delimit Scope E0_scope with e0.

Open Scope E0_scope.

Definition E0lt (alpha beta : E0) := T1.LT (@cnf alpha) (@cnf beta).

Definition E0le := leq E0lt.

Infix "o<" := E0lt : E0_scope.

Infix "o<=" := E0le : E0_scope.

Equality in E0 is just Leibniz equality. Note that, since nf is defined by a
Boolean function, for any term α : T1, there exists at most one proof of nf α,
thus two ordinals of type E0 are equal if and only if their projection to T1 are
equal (see also Sect. 3.3 on page 66).

Lemma nf_proof_unicity :

forall (alpha:T1) (H H': nf alpha), H = H'.

Proof.

intros; red in H, H'; apply eq_proofs_unicity_on; decide equality.

Qed.

Corollary E0_eq_iff (alpha beta: E0) :

alpha = beta <-> cnf alpha = cnf beta.

In order to upgrade constants and functions from type T1 to E0, we have to
prove that the term they build is in normal form. For instance, let us represent
the ordinals 0 and ω as instances of the class E0.

#[export] Instance E0zero : E0 := @mkord zero refl_equal.

#[export] Instance E0_omega : E0 := @mkord T1omega refl_equal.

G Our library gaia_hydras.T1Bridge also defines a type E0 (which doesn’t
exist in Gaia-ssete9).

../theories/html/gaia_hydras.T1Bridge.html

4.1. THE ORDINAL ε0 83

4.1.8 Syntactic definition of limit and successor ordinals
Pattern matching and structural recursion allow us to define boolean character-
izations of successor and limit ordinals.
From Module Epsilon0.T1

Fixpoint T1is_succ alpha :=

match alpha with

| zero => false

| cons zero _ _ => true

| cons _alpha _n beta => T1is_succ beta

end.

Fixpoint T1limit alpha :=

match alpha with

| zero => false

| cons zero _ _ => false

| cons _ _ zero => true

| cons _ _ beta => T1limit beta

end.

Compute T1limit T1omega.

= true

: bool

Compute T1limit 42.

= false

: bool

Compute T1is_succ 42.

= true

: bool

Compute T1is_succ T1omega.

= false

: bool

The correctness of these definitions with respect to the mathematical no-
tions of limit and successor ordinals is established through several lemmas. For
instance, Lemma canonS_limit_lub, page 105, shows that if α is (syntactically)
a limit ordinal, then it is the least upper bound of a strictly increasing sequence
of ordinals.

G In Gaia, the boolean functions associated with limit and successor ordinals
are also called T1limit and T1is_succ.

From gaia_hydras.HydraGaia_Examples.

../theories/html/hydras.Epsilon0.T1.html#T1is_succ
../theories/html/gaia_hydras.HydraGaia_Examples.html

84 CHAPTER 4. THE ORDINAL EPSILON0

Compute (T1limit T1omega, T1is_succ (omega_tower 2), T1is_succ (\F 42)).

= (true, false, true)

: bool * bool * bool

4.1.9 Arithmetic on ε0

4.1.9.1 Successor

The successor of any ordinal α < ε0 is defined by structural recursion on its
Cantor normal form.
From Module Epsilon0.T1

Fixpoint succ (a: T1) : T1 :=

match a with

| zero => T1nat 1

| cons zero n _ => cons zero (S n) zero

| cons b n c => cons b n (succ c)

end.

The following lemma establishes the connection between the function succ

and the Boolean predicate T1is_succ.

Lemma T1is_succ_iff alpha (Halpha : nf alpha) :

T1is_succ alpha <-> exists beta : T1, nf beta /\ alpha = succ beta.

Exercise 4.1 G Look for the Gaia-theorem which corresponds to T1is_succ_iff.

4.1.9.2 Successor function on E0

The function succ on T1 is extended to E0 the following way:
From Module Epsilon0.E0

#[global, program] Instance E0_succ (alpha : E0) : E0 :=

@mkord (T1.succ (@cnf alpha)) _.

Next Obligation. apply succ_nf, cnf_ok. Defined.

Exercise 4.2 Prove in Coq that for any ordinal 0 < α < ε0, α is a limit if and
only if for all β < α, the interval [β, α) is infinite.

You may start this exercise with the file exercises/ordinals/Limit_Infinity.v.

4.1.9.3 Addition and multiplication

Ordinal addition and multiplication are also defined by structural recursion over
the type T1. Please note that they use the compare function on some subterms
of their arguments.

Fixpoint T1add (a b : T1) :T1 :=

match a, b with

| zero, y => y

| x, zero => x

../theories/html/hydras.Epsilon0.T1.html#succ
../theories/html/hydras.Epsilon0.E0.html
https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/Limit_Infinity.v

4.1. THE ORDINAL ε0 85

| cons a n b, cons a' n' b' =>

(match compare a a' with

| Lt => cons a' n' b'

| Gt => (cons a n (T1add b (cons a' n' b')))

| Eq => (cons a (S (n+n')) b')

end)

end

where "alpha + beta" := (T1add alpha beta) : t1_scope.

Fixpoint T1mul (a b : T1) :T1 :=

match a, b with

| zero, _ => zero

| _, zero => zero

| cons zero n _, cons zero n' b' =>

cons zero (Peano.pred((S n) * (S n'))) b'

| cons a n b, cons zero n' _ =>

cons a (Peano.pred ((S n) * (S n'))) b

| cons a n b, cons a' n' b' =>

cons (a + a') n' ((cons a n b) * b')

end

where "a * b" := (T1mul a b) : t1_scope.

G We keep Gaia’s base names for addition and multiplication of ordinal
terms below ε0. Please refer to Sect. 7.2.3.5 about compatibility of both arith-
metics.

4.1.9.4 Examples

The following examples are instances of proofs by computation. Please note
that addition and multiplication on T1 are not commutative. Moreover, both
operations fail to be strictly monotonous in their first argument.

Example Ex1 : 42 + T1omega = T1omega.

Proof. reflexivity. Qed.

Example Ex2 : T1omega t1< T1omega + 42.

Proof. now compute. Qed.

Example Ex3 : 5 * T1omega = T1omega.

Proof. reflexivity. Qed.

Example Ex4 : T1omega t1< T1omega * 5.

Proof. now compute. Qed.

Lemma T1add_not_monotonous_l :

exists a b c : T1, a t1< b /\ a + c = b + c.

Proof. exists 3, 5, T1omega; now compute. Qed.

Lemma T1mul_not_monotonous :

exists a b c : T1, c <> zero /\ a t1< b /\ a * c = b * c.

Proof. exists 3, 5, T1omega; split; [discriminate| now compute]. Qed.

86 CHAPTER 4. THE ORDINAL EPSILON0

The function succ is related with addition through the following lemma:

Lemma succ_is_plus_one (a : T1) : succ a = a + 1.

Proof.

induction a as [|a IHa n b IHb]; [trivial |].

(* ... *)

Qed.

4.1.9.5 Arithmetic on type E0

We define an addition in type E0, since the sum of two terms in normal form is
in normal form too.

Lemma plus_nf:

forall a, nf a -> forall b, nf b -> nf (a + b).

#[global, program] Instance E0add (alpha beta : E0) : E0 :=

@mkord (T1add (@cnf alpha) (@cnf beta))_ .

Next Obligation. apply plus_nf; apply cnf_ok. Defined.

Infix "+" := E0add : E0_scope.

Check E0_omega + E0_omega.

E0_omega + E0_omega

: E0

Remark 4.3 In all this development, two representations of ordinals co-exist:
ordinal terms (type T1, notation scope t1_scope, for reasoning on the tree-
structure of Cantor normal forms), and ordinal terms known to be in normal
form (type E0, notation scope E0_scope). Looking at the contexts displayed by
Coq prevents you from any risk of confusion.

Exercise 4.3 Prove that for any ordinal α : E0, ω ≤ α if and only if, for any
natural number i, i+ α = α.

You may start this exercise with the file exercises/ordinals/ge_omega_iff.v.

4.1.10 A proof by computation
It is interesting to compare the following proof of the equality ω+42+ω2 with
the more theoretical proof in Sect 8.6.5 on page 177.

Example Ex42: E0_omega + 42 + E0_omega^2 = E0_omega^2.

Proof.

rewrite <- Comparable.compare_eq_iff.

compare (E0_omega + 42 + E0_phi0 2) (E0_phi0 2) = Eq

reflexivity.

Qed.

https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/ge_omega_iff.v

4.2. WELL-FOUNDEDNESS AND TRANSFINITE INDUCTION 87

4.2 Well-foundedness and transfinite induction
4.2.1 About well-foundedness
In order to use T1 for proving termination results, we need to prove that our
order < is well-founded. Then we will get transfinite induction for free.

The proof of well-foundedness of the strict order < on Cantor normal forms is
already available in the Cantor contribution by Castéran and Contejean [CC06].
That proof relies on a library on recursive path orderings written by E. Conte-
jean. We present here a direct proof of the same result, which does not require
any knowledge on r.p.o.s.

Exercise 4.4 Prove that the total order lt on T1 is not well-founded. Hint:
You will have to build a counter-example with terms of type T1 which are not
in Cantor normal form.

You may start this exercise with the file exercises/ordinals/T1_ltNotWf.v.

4.2.1.1 A first attempt

It is natural to try to prove by structural induction over T1 that every term in
normal form is LT-accessible.

Unfortunately, it won’t work. Let us consider some well-formed term α =
cons β n γ, and assume that β and γ are LT-accessible. In order to prove the
accessibility of α, we have to consider any well formed term δ such that δ < α.

Section First_attempt.

Lemma wf_LT : forall alpha: T1, nf alpha -> Acc LT alpha.

Proof.

induction alpha as [| beta IHbeta n gamma IHgamma].

- split. intros y H0; inversion H0 as [_ [H3 _]];

destruct (not_lt_zero H3).

- split; intros delta Hdelta.

IHbeta: nf beta -> Acc LT beta

IHgamma: nf gamma -> Acc LT gamma

delta: T1

Hdelta: delta t1< cons beta n gamma

Acc LT delta

The problem comes from the too weak hypothesis Hdelta. It does not prevent
δ to be bigger that β or γ; for instance δ may be of the form cons β p′ γ′,
where p′ < n. Thus, the induction hypotheses IHbeta and IHgamma are useless
for finishing our proof.

Abort.

End First_attempt.

4.2.1.2 Using a stronger inductive predicate.

Instead of trying to prove directly that any ordinal term α in normal form is
accessible through LT, we propose to consider the following (stronger) predicate:

https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/T1_ltNotWf.v

88 CHAPTER 4. THE ORDINAL EPSILON0

Let Acc_strong (alpha:T1) :=

forall n beta,

nf (cons alpha n beta) -> Acc LT (cons alpha n beta).

The following lemma is an application of the strict inequality α < ωα. If α
is strongly accessible, then, by definition, ωα is accessible, thus α is a fortiori
accessible.

Lemma Acc_strong_stronger : forall alpha,

nf alpha -> Acc_strong alpha -> Acc LT alpha.

Proof.

intros alpha H H0; apply acc_impl with (phi0 alpha).

- repeat split; trivial.

+ now apply lt_a_phi0_a.

- apply H0; now apply single_nf.

Qed.

Thus, it remains to prove that every ordinal strictly less than ε0 is strongly
accessible.

4.2.1.2.1 A helper First, we prove that, for any LT-accessible term α, α is
strongly accessible too. The following proof is structured as an induction on α′s
accessibility. Let us consider any accessible term α.

Lemma Acc_implies_Acc_strong : forall alpha,

Acc LT alpha -> Acc_strong alpha.

Proof.

(* main induction (on alpha's accessibility) *)

unfold Acc_strong; intros alpha Aalpha.

alpha: T1

Aalpha: Acc LT alpha

forall (n : nat) (beta : T1),

nf (cons alpha n beta) -> Acc LT (cons alpha n beta)

pattern alpha;

eapply Acc_ind with (R:= LT);[| assumption];

clear alpha Aalpha; intros alpha Aalpha IHalpha.

alpha: T1

Aalpha: forall y : T1, y t1< alpha -> Acc LT y

IHalpha: forall y : T1,

y t1< alpha ->

forall (n : nat) (beta : T1),

nf (cons y n beta) -> Acc LT (cons y n beta)

forall (n : nat) (beta : T1),

nf (cons alpha n beta) -> Acc LT (cons alpha n beta)

First, we prove that, for any n and β, if (cons α n β) is in normal form,
then β is accessible.

4.2. WELL-FOUNDEDNESS AND TRANSFINITE INDUCTION 89

assert(beta_Acc:

forall beta, lt beta (phi0 alpha) -> nf alpha -> nf beta

-> Acc LT beta).

(* ... *)

The new hypothesis beta_Acc allows us to prove by well-founded induction
on β, and natural induction on n that (cons α n β) is accessible.

alpha: T1

Aalpha: forall y : T1, y t1< alpha -> Acc LT y

IHalpha: forall y : T1,

y t1< alpha ->

forall (n : nat) (beta : T1),

nf (cons y n beta) -> Acc LT (cons y n beta)

beta_Acc: forall beta : T1,

lt beta (phi0 alpha) ->

nf alpha -> nf beta -> Acc LT beta

forall (n : nat) (beta : T1),

nf (cons alpha n beta) -> Acc LT (cons alpha n beta)

The proof, quite long, can be consulted in Epsilon0.T1.

4.2.1.2.2 Accessibility of any well-formed ordinal term Our goal is
still to prove accessibility of any well formed ordinal term. Thanks to our
previous lemmas, we are almost done (by a simple structural induction!).

Theorem nf_Acc (alpha : T1): nf alpha -> Acc LT alpha.

Proof.

induction alpha.

- intro; apply Acc_zero.

- intros; eapply Acc_implies_Acc_strong;auto.

apply IHalpha1; eauto.

alpha1: T1

n: nat

alpha2: T1

IHalpha1: nf alpha1 -> Acc LT alpha1

IHalpha2: nf alpha2 -> Acc LT alpha2

H: nf (cons alpha1 n alpha2)

nf alpha1

apply nf_inv1 in H; auto.

Qed.

Corollary T1_wf : well_founded LT.

4.2.2 Transfinite induction
Traditionnally, well-founded induction on ordinals is called transfinite induction.

../theories/html/hydras.Epsilon0.T1.html

90 CHAPTER 4. THE ORDINAL EPSILON0

Definition transfinite_recursor := well_founded_induction_type T1_wf.

Check transfinite_recursor.

transfinite_recursor

: forall P : T1 -> Type,

(forall x : T1,

(forall y : T1, y t1< x -> P y) -> P x) ->

forall a : T1, P a

Ltac transfinite_induction alpha :=

pattern alpha; apply transfinite_recursor.

As a corollary, the order Lt on type E0 is well-founded too.

Lemma E0lt_wf : well_founded E0lt.

Proof.

split; intros [t Ht] H;

apply (Acc_inverse_image _ _ LT (@cnf)

{| cnf := t; cnf_ok := Ht |});

now apply T1.nf_Acc.

Defined.

Remark 4.4 (Related work) A proof of well-foundedness using Évelyne Con-
tejean’s work on recursive path ordering [Der82, CPU+10] is also available in
the library Epsilon0.Epsilon0rpo.

In [MV05], Manolios and Vroom prove the well-foundedness of ordinal terms
below ε0 by reduction to the natural order on the set of natural numbers.

4.2.3 An ordinal notation for ε0

We are now able to build an instance of ON.
From Module Epsilon0.E0

#[global] Instance E0_comp: Comparable E0lt compare.

Proof. split; [apply E0_sto | apply compare_correct]. Qed.

#[global] Instance Epsilon0 : ON E0lt compare.

Proof. split; [apply E0_comp | apply E0lt_wf]. Qed.

We prove also that this notation is correct w.r.t. Schutte’s model (see Chap-
ter 8).
From Module Schutte.Correctness_E0

Fixpoint inject (t:T1) : Ord :=

match t with

| T1.zero => zero

| T1.cons a n b => AP._phi0 (inject a) * S n + inject b

end.

#[global] Instance Epsilon0_correct :

ON_correct epsilon0 Epsilon0 (fun alpha => inject (cnf alpha)).

../theories/html/hydras.Epsilon0.Epsilon0rpo.html
../theories/html/hydras.Epsilon0.E0.html
../theories/html/hydras.Schutte.Correctness_E0.html

4.3. AN ORDINAL NOTATION FOR ωω 91

4.2.4 An ordinal notation for Gaia’s ordinals
G Module gaia.T1Bridge contains an instance of class ON E0lt compare, where

E0lt is the order on the well-formed ordinal terms below ε0 defined in Gaia-
hydras library (please see Chapter 7).

#[global] Instance Epsilon0 : ON E0lt compare.

Proof. split; [apply: E0_comp | apply: gE0lt_wf]. Qed.

Project 4.2 This exercise is a continuation of Project 3.12 on page 70. Use
ON_mult to define an ordinal notation Omega2 for ω2 = ω × ω.

Prove that Omega2 is a sub-notation of Epsilon0.
Define on Omega2 an addition compatible with the addition on Epsilon0.
Hint. You may use the following definition (in OrdinalNotations.ON_Generic).

Definition SubON_same_op `{OA : @ON A ltA compareA}

`{OB : @ON B ltB compareB}

{iota : A -> B} {alpha: B}

{_ : SubON OA OB alpha iota}

(f : A -> A -> A)

(g : B -> B -> B)

:= forall x y, iota (f x y) = g (iota x) (iota y).

Project 4.3 The class ON of ordinal notations has been defined long after this
chapter, and is not used in the development of the type E0 yet. A better inte-
gration of both notions should simplify the development on ordinals in Cantor
normal form. This integration is planned for the future versions.

4.3 An ordinal notation for ωω

In Module theories/ordinals/OrdinalNotations/OmegaOmega.v, we represent
ordinals below ωω by lists of pairs of natural numbers (with the same coeffi-
cient shift as in T1). For instance, the ordinal ω4×10+ω3+ω+5 is represented
by the list (4,9)::(3,0)::(1,0)::(0,4)::nil.

Module LO.

Definition t := list (nat*nat).

Definition zero : t := nil.

(** omega^ i * S n + alpha *)

Notation cons i n alpha := ((i,n)::alpha).

(** Finite ordinals *)

Notation FS n := (cons 0 n zero: t).

../theories/html/gaia.T1Bridge.html
../theories/html/hydras.OrdinalNotations.ON_Generic.html
https://github.com/coq-community/hydra-battles/blob/master/theories/ ordinals/OrdinalNotations/OmegaOmega.v

92 CHAPTER 4. THE ORDINAL EPSILON0

Definition fin (n:nat): t := match n with 0 => zero | S p => FS p end.

Coercion fin : nat >-> t.

(** [omega ^i] *)

Notation phi0 i := (cons i 0 nil).

Notation omega := (phi0 1).

The usual operations : succ, +, * are simple variants of the same operations
in T1.

Fixpoint succ (a : t) : t :=

match a with

| nil => fin 1

| cons 0 n _ => cons 0 (S n) nil

| cons a n b => cons a n (succ b)

end.

Fixpoint plus (a b : t) :t :=

match a, b with

| nil, y => y

| x, nil => x

| cons a n b, cons a' n' b' =>

(match Nat.compare a a' with

| Datatypes.Lt => cons a' n' b'

| Gt => (cons a n (plus b (cons a' n' b')))

| Eq => (cons a (S (n+n')) b')

end)

end

where "a + b" := (plus a b) : lo_scope.

Fixpoint mult (a b : t) : t :=

match a, b with

| nil, _ => zero

| _, nil => zero

| cons 0 n _, cons 0 n' b' =>

cons 0 (Peano.pred((S n) * (S n'))) b'

| cons a n b, cons 0 n' _ =>

cons a (Peano.pred ((S n) * (S n'))) b

| cons a n b, cons a' n' b' =>

cons (a + a')%nat n' ((cons a n b) * b')

end

where "a * b" := (mult a b) : lo_scope.

Compute omega * omega.

= phi0 2

: t

Compute fin 1 * omega.

4.3. AN ORDINAL NOTATION FOR ωω 93

= omega

: t

Compute fin 42 * omega.

= omega

: t

We establish this representation as a refinement of the data types we used
to represent ordinals less than ε0. Thus, many properties like well-foundedness
of < and associativity of +, of this ordinal notations have very short proofs.

Fixpoint refine (a : t) : T1.T1 :=

match a with

nil => T1.zero

| cons i n b => T1.cons (\F i)%t1 n (refine b)

end.

Lemma phi0_ref (i:nat) : refine (phi0 i) = T1.phi0 (\F i).

Proof. reflexivity. Qed.

Lemma succ_ref (alpha : t) :

refine (succ alpha) = T1.succ (refine alpha).

Lemma plus_ref : forall alpha beta: t,

refine (alpha + beta) = T1.T1add (refine alpha) (refine beta).

Lemma mult_ref : forall alpha beta: t,

refine (alpha * beta) =

T1.T1mul (refine alpha) (refine beta).

In order to make an ordinal notation for ωω, we follow the same steps as for
ε0:

1. Define an order lt, which refines the order lt on T1.

#[global] Instance compare_oo : Compare t :=

fix cmp (a b : t) :=

match a, b with

| nil, nil => Eq

| nil, cons a' n' b' => Datatypes.Lt

| _ , nil => Gt

| (cons a n b),(cons a' n' b') =>

(match Nat.compare a a' with

| Datatypes.Lt => Datatypes.Lt

| Gt => Gt

| Eq => (match Nat.compare n n' with

| Eq => cmp b b'

| comp => comp

end)

end)

end.

Lemma compare_ref (a b : t) :

compare a b = compare (refine a) (refine b).

94 CHAPTER 4. THE ORDINAL EPSILON0

Definition lt (a b : t) : Prop :=

compare a b = Datatypes.Lt.

Lemma lt_ref (a b : t) :

lt a b <-> T1.lt (refine a) (refine b).

2. Define the predicate “to be in normal form”.

Fixpoint nf_b (alpha : t) : bool :=

match alpha with

| nil => true

| cons a n nil => true

| cons a n ((cons a' n' b') as b) =>

(nf_b b && Nat.ltb a' a)%bool

end.

Definition nf alpha :Prop := nf_b alpha.

3. Define a class OO of terms in normal form, and an embedding from E0 into
OO.

Class OO : Type := mkord {data: LO.t ; data_ok : LO.nf data}.

Arguments data : clear implicits.

#[local] Hint Resolve data_ok : core.

Definition lt (alpha beta: OO) := LO.lt (data alpha) (data beta).

Definition le := leq lt.

#[global] Instance compare_OO : Compare OO :=

fun (alpha beta: OO) => LO.compare_oo (data alpha) (data beta).

#[global] Instance embed (alpha: OO) : E0.E0.

Proof.

destruct alpha as [data Hdata].

refine (@E0.mkord (LO.refine data) _).

now apply nf_ref.

Defined.

4. Infer well-foundedness of the order on OO.

Lemma lt_wf : well_founded lt.

#[global] Instance ON_OO : ON lt compare.

End OO.

Let us show a few examples.

Import OO.

#[local] Open Scope OO_scope.

Check phi0 7.

4.4. A VARIANT FOR HYDRA BATTLES 95

phi0 7

: OO

#[global] Coercion Fin : nat >-> OO.

Example Ex42: omega + 42 + omega^ 2 = omega^ 2.

rewrite <- Comparable.compare_eq_iff.

compare (omega + 42 + phi0 2) (phi0 2) = Eq

reflexivity.

Qed.

4.3.1 Related work
The article [BMR16] defines another representation of ordinals below ωω based
on lists of natural numbers.

Exercise 4.5 It may be interesting to write a direct proof of well-foundedness
of the order in ωω (i.e. without using properties of ε0). This exercise may help
to understand better the proof structure of Sect. 4.2.1.2 on page 87.

4.4 A variant for hydra battles
In order to prove the termination of any hydra battle, we try to define a variant
mapping hydras to ordinals strictly less than ε0. In order to make such a variant
easy to define (for instance by a structural recursion), we introduce a variant
of addition, which, contrary to +, is commutative and strictly monotonous in
both of its arguments. This last property makes it possible to prove that our
function is truly a variant for hydra battles (in Sect. 4.4.3 on page 99).

4.4.1 Natural sum (a.k.a. Hessenberg’s sum)
Natural sum (Hessenberg sum) is a commutative and monotonous version of
addition. It is used as an auxiliary operation for defining variants for hydra
battles, where Hercules is allowed to chop off any head of the hydra.

In the literature, the natural sum of ordinals α and β is often denoted by
α#β or α⊕ β. Thus we called oplus the associated Coq function.

4.4.1.1 Definition of oplus

The definition of oplus is recursive in both of its arguments and uses the same
pattern as for the merge function on lists of library Coq.Sorting.Mergesort.

1. Define a nested recursive function, using the Fix construct

2. Build a principle of induction dedicated to oplus

3. Establish equations associated to each case of the definition.

96 CHAPTER 4. THE ORDINAL EPSILON0

4.4.1.1.1 Nested recursive definition The following definition is com-
posed of

• A main function oplus, structurally recursive in its first argument alpha

• An auxiliary function oplus_aux within the scope of alpha, structurally
recursive in its argument beta; oplus_aux beta is supposed to compute
oplus alpha beta.

From Module Epsilon0.Hessenberg

Fixpoint oplus (alpha beta : T1) : T1 :=

let fix oplus_aux beta {struct beta} :=

match alpha, beta with

| zero, _ => beta

| _, zero => alpha

| cons a1 n1 b1, cons a2 n2 b2 =>

match compare a1 a2 with

| Gt => cons a1 n1 (oplus b1 beta)

| Lt => cons a2 n2 (oplus_aux b2)

| Eq => cons a1 (S (n1 + n2)%nat) (oplus b1 b2)

end

end

in oplus_aux beta.

Infix "o+" := oplus (at level 50, left associativity).

The reader will note that each recursive call of the functions oplus and
oplus_aux satisfies Coq’s constraint on recursive definitions. The function oplus

is recursively called on a sub-term of its first argument, and oplus_aux on a
sub-term of its unique argument. Thus, oplus’s definition is accepted by Coq
as a structurally recursive function.

4.4.1.2 Rewriting lemmas

Coq’s constraints on recursive definitions result in the quite complex form of
oplus’s definition. Proofs of properties of this function can be simpler if we
derive a few rewriting lemmas that will help to simplify expressions of the form
(oplus α β).

A first set of lemmas correspond to the various cases of oplus’s definition.
They can be proved almost immediately. Here are a few examples.

Lemma oplus_0_r (alpha : T1) : alpha o+ zero = alpha.

Proof.

destruct alpha; reflexivity.

Qed.

Lemma oplus_0_l (beta : T1): zero o+ beta = beta.

Proof.

destruct beta; reflexivity.

Qed.

../theories/html/hydras.Epsilon0.Hessenberg.html#oplus

4.4. A VARIANT FOR HYDRA BATTLES 97

Lemma oplus_compare_Lt:

forall a n b a' n' b',

compare a a' = Lt ->

cons a n b o+ cons a' n' b' = cons a' n' (cons a n b o+ b').

Project 4.4 Compare oplus’s definition (with inner fixpoint) with other pos-
sibilities (coq-equations, Function, etc.).

4.4.2 More theorems on Hessenberg sum
We need to prove some properties of ⊕, particularly about its relation with the
order < on T1.

4.4.2.1 Commutativity, associativity

We prove the commutativity of ⊕ in two steps. First, we prove by transfinite
induction on α that the restriction of ⊕ to the interval [0, α) is commutative.

Lemma oplus_comm_0 (gamma: T1):

nf gamma ->

forall alpha beta, nf alpha -> nf beta ->

T1.lt alpha gamma ->

T1.lt beta gamma ->

alpha o+ beta = beta o+ alpha.

Proof.

transfinite_induction gamma.

(* ... *)

Then, we infer ⊕’s commutativity for any pair of ordinals: Let α and β be
two ordinals strictly less than ε0. Both ordinals α and β are strictly less than
max(α, β) + 1. Thus, we have just to apply the lemma oplus_comm_0.

Lemma oplus_comm (alpha beta: T1):

nf alpha -> nf beta -> alpha o+ beta = beta o+ alpha.

Proof.

intros ? ?; apply oplus_comm_0 with (T1.succ (max alpha beta));

trivial.

(* ... *)

Associativity of Hessenberg sum is proved the same way.

Lemma oplus_assoc_0 (alpha: T1):

nf alpha ->

forall a b c, nf a -> nf b -> nf c ->

T1.lt a alpha ->

T1.lt b alpha -> T1.lt c alpha ->

a o+ (b o+ c) = (a o+ b) o+ c.

Proof.

transfinite_induction_lt alpha.

(* ... *)

98 CHAPTER 4. THE ORDINAL EPSILON0

Lemma oplus_assoc (alpha beta gamma:T1) :

nf alpha -> nf beta -> nf gamma ->

alpha o+ (beta o+ gamma) =

alpha o+ beta o+ gamma.

Proof with eauto with T1.

intros.

apply oplus_assoc_0 with (T1.succ (max alpha (max beta gamma)));

trivial.

(* ... *)

4.4.2.2 Monotony

At last, we prove that ⊕ is strictly monotonous in both of its arguments.

Lemma oplus_strict_mono_LT_l (alpha beta gamma : T1) :

nf gamma -> alpha t1< beta ->

alpha o+ gamma t1< beta o+ gamma.

Lemma oplus_strict_mono_LT_r (alpha beta gamma : T1) :

nf alpha -> beta t1< gamma ->

alpha o+ beta t1< alpha o+ gamma.

Project 4.5 The library Hessenberg looks too long (proof scripts and compila-
tion). Please try to make it simpler and more efficient! Thanks!

G The module gaia_hydras.GHessenberg defines a version of Hessenberg
sum compatible with Gaia’s type T1.

4.4.3 A termination measure for hydra battles
Let us define a measure from type Hydra into T1.

From Module Hydra.Hydra_Termination

Fixpoint m (h:Hydra) : T1 :=

match h with head => T1.zero

| node hs => ms hs

end

with ms (s:Hydrae) : T1 :=

match s with hnil => T1.zero

| hcons h s' => T1.phi0 (m h) o+ ms s'

end.

First, we prove that the measurem(h) of any hydra h is a well-formed ordinal
term of type T1.

Lemma m_nf : forall h, nf (m h).

Proof.

induction h using Hydra_rect2

with (P0 := fun s => nf (ms s)).

(* ... *)

../theories/html/gaia_hydras.~GHessenberg.html
../theories/html/hydras.Hydra.Hydra_Termination.html#m

4.4. A VARIANT FOR HYDRA BATTLES 99

Lemma ms_nf : forall s, nf (ms s).

For proving the termination of all hydra battles, we have to prove that m is
a variant. First, a few technical lemmas follow the decomposition of round into
several relations. Then the lemma round_decr gathers all the cases.

Lemma S0_decr:

forall s s', S0 s s' -> ms s' t1< ms s.

Lemma R1_decr :

forall h h', R1 h h' -> m h' t1< m h.

Lemma S1_decr n:

forall s s', S1 n s s' -> ms s' t1< ms s.

Lemma R2_decr n : forall h h', R2 n h h' -> m h' t1< m h.

repeat split; auto with T1; now eapply R2_decr_0 with n. (*. none *)

Lemma round_decr : forall h h', h -1-> h' -> m h' t1< m h.

Proof.

destruct 1 as [n [H | H]].

- now apply R1_decr.

- now apply R2_decr with n.

Qed.

Finally, we prove termination of all (free) battles.

#[global] Instance HVariant : Hvariant Epsilon0 free var.

Proof.

split; intros; eapply round_decr; eauto.

Qed.

Theorem every_battle_terminates : Termination.

Proof.

red; apply Inclusion.wf_incl with (R2 := fun h h' => m h t1< m h').

red; intros; now apply round_decr.

apply Inverse_Image.wf_inverse_image, T1_wf.

Qed.

G The module gaia_hydras.GHydra contains a proof of Gaia-hydras version
of termination of all battles.

Fixpoint m (h:Hydra) : T1 :=

if h is node (hcons _ _ as hs) then ms hs else zero

with ms (s : Hydrae) : T1 :=

if s is hcons h s' then phi0 (m h) o+ ms s' else zero.

Compute T1pp (m Examples.Hy).

= (ω ^ (ω ^ ω ^ 2 + 1) + 2)%pT1

: ppT1

Lemma mVariant: Hvariant nf_Wf free m .

Theorem every_battle_terminates : Termination.

../theories/html/gaia_hydras.GHydra.html

100 CHAPTER 4. THE ORDINAL EPSILON0

Chapter 5

Accessibility inside ε0: The
Ketonen-Solovay Machinery

5.1 Introduction
The reader may think that our proof of termination in the previous chapter
requires a lot of mathematical tools and may be too complex. So, the question
is “is there any simpler proof” ?

In their article [KP82], Kirby and Paris show that this result cannot be
proved in Peano arithmetic. Their proof uses some knowledge about model
theory and non-standard models of Peano arithmetic. In this chapter, we focus
on a specific class of proofs of termination of hydra battles: construction of some
variant mapping the type Hydra into a given initial segment of ordinals. Our
proof relies only on the Calculus of Inductive Constructions and is a natural
complement of the results proven in the previous chapters.

• There is no variant mapping the type Hydra into the interval [0, ω2) (section
3.8.2 on page 62), and a fortiori [0, ω) (section 2.4.3 on page 45).

• There exists a variant which maps the type Hydra into the interval [0, ε0)
(theorem every_battle_terminates, in section 4.4.3 on page 99).

Thus, a very natural question is the following one:

“ Is there any variant from Hydra into some interval [0, µ), where
µ < ε0, for proving the termination of all hydra battles ?”

We prove in Coq the following result:

There is no variant for proving the termination of all hydra battles
from Hydra into the interval [0..µ), where µ < ε0. The same im-
possibility holds even if we consider only standard battles (with the
successive replication factors 0, 1, 2, . . . , t, t+ 1, . . .).

Our proofs are constructive and require no axioms: they are closed terms
of the CIC, and are mainly composed on function definitions and proofs of
properties of these functions. They borrow much theoretical material from Kirby

101

102 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

and Paris, although they do not use any knowledge about Peano arithmetic nor
about model theory. The combinatorial arguments we use and implement come
from an article by J. Ketonen and R. Solovay [KS81], already cited in the work
by L. Kirby and J. Paris. Section 2 of this article: ”A hierarchy of probably
recursive functions”, contains a systematic study of canonical sequences, which
are closely related to rounds of hydra battles. Nevertheless, they have the same
global structure as the simple proofs described in sections 2.4.3 on page 45 and
3.8.2 on page 62. We invite the reader to compare the three proofs step by step,
lemma by lemma.

5.2 Canonical Sequences
Canonical sequences are functions that associate an ordinal {α}(i) to every
ordinal α < ε0 and positive integer i. They satisfy several nice properties:

• If α 6= 0, then {α}(i) < α. Thus canonical sequences can be used in proofs
by transfinite induction or function definition by transfinite recursion

• If λ is a limit ordinal, then λ is the least upper bound of the set {{λ}(i) | i ∈
N1}

• If β < α < ε0, then there is a “path” from α to β, i.e. a sequence
α0 = α, α1, . . . , αn = β, where for every k < n, there exists some ik such
that αk+1 = {αk}(ik)

Remark 5.1 Canonical sequences are defined for any ordinal α < ε0, by stating
that if α is a successor ordinal β+1, the sequence associated with α is simply the
constant sequence whose terms are equal to β. Likewise, the canonical sequence
of 0 maps any natural number to 0.

Thus, the function that maps any ordinal α and natural number i to the
ordinal {α}(i) is total.

5.2.1 Canonical sequences and hydra battles
Canonical sequences correspond tightly to rounds of hydra battles: if α 6= 0,
then ι(α) is transformed into ι({α}(i+ 1)) in one round with the replication
factor i (Lemma Hydra.O2H.canonS_iota_i). Thus, whenever β < α < ε0,
there exists a (free) battle from ι(α) to ι(β).

5.2.2 Definitions
First, let us recall how canonical sequences are defined in [KS81]. For efficiency’s
sake, we decided not to implement directly K.&S’s definitions, but to define in
Gallina simply typed structurally recursive functions which share the abstract
properties which are used in the mathematical proofs.

5.2.2.1 Mathematical definition of canonical sequences

In [KS81] the definition of {α}(i) is based on the following remark:

../theories/html/hydras.Hydra.O2H.html#canonS_iota_i

5.2. CANONICAL SEQUENCES 103

Any non-zero ordinal α can be decomposed in a unique way as the
product ωβ × (γ + 1).

Thus the {α}(i) s are defined in terms of this decomposition:

Definition 5.1 (Canonical sequences: mathematical definition)

• Let λ < ε0 be a limit ordinal

– If λ = ωα+1 × (β + 1), then {λ}(i) = ωα+1 × β + ωα × i

– If λ = ωγ×(β+1), where γ < λ is a limit ordinal, then {λ}(i) =
ωγ × β + ω{γ}(i)

• For successor ordinals, we have {α+ 1}(i) = α

• Finally, {0}(i) = 0.

5.2.2.2 Canonical sequences in Coq

Our definition may look more complex than the mathematical one, but uses
plain structural recursion over the type T1. Thus, tactics like cbn, simpl,
compute, etc., are applicable.
From Module Epsilon0.Canon

Fixpoint canon alpha (i:nat) : T1 :=

match alpha with

| zero => zero

| cons zero 0 zero => zero

| cons zero (S k) zero => FS k

| cons gamma 0 zero => (match T1.pred gamma with

Some gamma' =>

match i with

| 0 => zero

| S j => cons gamma' j zero

end

| None => cons (canon gamma i) 0 zero

end)

| cons gamma (S n) zero =>

(match T1.pred gamma with

Some gamma' =>

(match i with

0 => cons gamma n zero

| S j => cons gamma n (cons gamma' j zero)

end)

| None => cons gamma n (cons (canon gamma i) 0 zero)

end)

| cons alpha n beta => cons alpha n (canon beta i)

end.

../theories/html/hydras.Epsilon0.Canon.html#canon

104 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

G The translation of canon compatible with Gaia’s data-types is defined in
gaia_hydras.GCanon (please see Sect. 7.3.2).

For instance Coq’s computing facilities allow us to verify the equalities
{ωω}(3) = ω3 and {ωωω+1+1}(42) = ωωω+1 × 42

Compute pp (canon (phi0 T1omega) 3).

= ω ^ 3

: ppT1

Compute pp (canon (T1omega ^ (T1omega ^ (T1omega + 1) +1))%t1 42).

= ω ^ ω ^ (ω + 1) * 42

: ppT1

5.2.3 Basic properties of canonical sequences
We did not try to prove that our definition truly implements Ketonen and
Solovay’s [KS81]’s canonical sequences. The most important is that we were
able to prove the abstract properties of canonical sequences that are really used
in our proof. The complete proofs are in the module Epsilon0.Canon. For
instance, the equality {α+ 1}(i) = α can be proved by structural induction on
α.

Lemma canon_succ i alpha :

nf alpha -> canon (succ alpha) i = alpha.

Proof.

revert i; induction alpha.

forall i : nat, nf zero -> canon (succ zero) i = zero

alpha1: T1

n: nat

alpha2: T1

IHalpha1: forall i : nat,

nf alpha1 -> canon (succ alpha1) i = alpha1

IHalpha2: forall i : nat,

nf alpha2 -> canon (succ alpha2) i = alpha2

forall i : nat,

nf (cons alpha1 n alpha2) ->

canon (succ (cons alpha1 n alpha2)) i =

cons alpha1 n alpha2

(* ... *)

5.2.3.1 Canonical sequences and the order <

We prove by transfinite induction over α that {α}(i) is an ordinal strictly less
than α (assuming α 6= 0). This property allows us to use the function canonS

and its derivatives in function definitions by transfinite recursion.

Lemma canon_LT i alpha : nf alpha -> alpha <> zero ->

canon alpha i t1< alpha.

../theories/html/gaia_hydras.GCanon.html#canon
../theories/html/hydras.Epsilon0.Canon.html

5.3. ACCESSIBILITY INSIDE ε0 : PATHS 105

G This lemma is also available in Library gaia_hydras.GCanon:

Lemma canon_lt (i : nat) [a : T1]: T1nf a -> a <> zero -> canon a i < a.

5.2.3.2 Limit ordinals are truly limits

The following theorem states that any limit ordinal λ < ε0 is the limit of the
sequence {λ}(i) (1 ≤ i).

From Module Epsilon0.Canon

Lemma canonS_limit_strong lambda :

nf lambda -> T1limit lambda ->

forall beta, beta t1< lambda -> {i:nat | beta t1< canon lambda (S i)}.

Proof.

transfinite_induction lambda.

(* ... *)

Defined.

Note the use of Coq’s sig type in the theorem’s statement, which expresses a
constructive view of the limit of a sequence: for any β < λ, we can compute an
item of the canonical sequence of λ which is greater than β. We can also state
directly that λ is a (strict) least upper bound of the elements of its canonical
sequence.

Lemma canonS_limit_lub (lambda : T1) :

nf lambda -> T1limit lambda -> strict_lub (fun i => canon lambda(S i)) lambda.

G In Gaia-hydras, the statement use a slightly different vocabulary:

Lemma canon_limit_of lambda (Hnf : T1nf lambda) (Hlim : T1limit lambda) :

limit_of (canon lambda) lambda.

Exercise 5.1 Instead of using the sig type, define a simply typed function
that, given two ordinals α and β, returns a natural number i such that, if α is a
limit ordinal and β < α, then β < {α}(i+ 1). Of course, you will have to prove
the correctness of your function.

Hint: You may add to your function a third argument usually called fuel

for allowing you to give a structurally recursive function (cf the post of Guil-
laume Melquiond on Coq-club (Dec 21, 2020) https://sympa.inria.fr/sympa/

arc/coq-club/2020-12/msg00069.html). The type fuel, an alternative to nat is
available on Prelude.Fuel) .

5.3 Accessibility inside ε0 : paths
Let us consider a kind of accessibility problem inside ε0: given two ordinals
α and β, where β < α < ε0, find a path consisting of a finite sequence γ0 =
α, . . . , γl = β, where, for every i < l, γi 6= 0 and there exists some strictly
positive integer si such that γi+1 = {γ}(si).

../theories/html/gaia_hydras.GCanon.html
../theories/html/hydras.Epsilon0.Canon.html#canonS_limit_strong
https://sympa.inria.fr/sympa/arc/coq-club/2020-12/msg00069.html
https://sympa.inria.fr/sympa/arc/coq-club/2020-12/msg00069.html
../theories/html/hydras.Prelude.Fuel.html

106 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Let s be the sequence 〈s0, s1, . . . , sl−1〉. We describe the existence of such a
path with the notation α −→

s
β. We say also that the considered path from α to

β starts at [index] s0 and ends at sl.
For instance, we have ω ∗ 2 −−−−−→

2,2,2,4,5
3, through the path 〈ω × 2, ω + 2, ω +

1, ω, 4, 3〉.

Remark 5.2 Note that, given α and β, where β < α, the sequence s which
leads from α to β is not unique.

For instance, we have ω×2 −→
2
ω and ω×2 −−−−→

3,4,5,6
ω. Likewise, ω×2 −−−−→

1,2,1,4
0

and ω × 2 −−−−−−−−−→
3,3,3,3,3,3,3,3

0.

5.3.1 Formal definition
In Coq, the notion of path can be simply defined as an inductive predicate
parameterized by the destination β.

From Module Epsilon0.Paths

Definition transition_S i : relation T1 :=

fun alpha beta => alpha <> zero /\ beta = canon alpha (S i).

Definition transition i : relation T1 :=

match i with 0 => fun _ _ => False | S j => transition_S j end.

Inductive path_to (beta: T1) : list nat -> T1 -> Prop :=

| path_to_1 : forall (i:nat) alpha ,

i <> 0 -> transition i alpha beta -> path_to beta (i::nil) alpha

| path_to_cons : forall i alpha s gamma,

i <> 0 -> transition i alpha gamma ->

path_to beta s gamma -> path_to beta (i::s) alpha.

Definition path alpha s beta := path_to beta s alpha.

Remark 5.3 In the present version of our library, we use a variant path_toS

of path_to, where the proposition (path_toS β s α) is equivalent to (path_to β
(List.map S s) α). This variant is scheduled to be deprecated.

G The library gaia_hydras.GPaths transposes the notion of path into Gaia’s
type T1 (please see Sect. 7.3.3).

Exercise 5.2 Write a tactic for solving goals of the form (path_to β s α)
where α, β and s are closed terms. You should solve automatically the fol-
lowing goals:

Example ex_path1: path_to T1omega (2::2::2::nil) (T1omega * 2).

Proof. path_tac. Qed.

Example ex_path2: path_to T1omega (3::4::5::6::nil) (T1omega * 2).

Proof. path_tac. Qed.

../theories/html/hydras.Epsilon0.Paths.html
../theories/html/gaia_hydras.GPaths.html

5.3. ACCESSIBILITY INSIDE ε0 : PATHS 107

Example ex_path3: path_to zero (interval 3 14) (T1omega * 2).

Proof. cbn;path_tac. Qed.

Example ex_path4: path_to zero (List.repeat 3 8) (T1omega * 2).

Proof. cbn; path_tac. Qed.

5.3.2 Existence of a path
By transfinite induction on α, we prove that for any β < α, one can build a
path from α to β (in other terms, β is accessible from α).

Lemma LT_path_to (alpha beta : T1) :

beta t1< alpha -> {s : list nat | path_to beta s alpha}.

By the lemma canon_LT (Sct.5.2.3.1 on page 104), we can convert any path into
an inequality on ordinals (by induction on paths).

Lemma path_to_LT beta s alpha :

path_to beta s alpha -> nf alpha -> beta t1< alpha.

Exercise 5.3 (continuation of exercise 5.1 on page 105) Define a simply
typed function for computing a path from α to β.

5.3.3 Paths and hydra battles
In order to apply our knowledge about ordinal numbers less than ε0 to the study
of hydra battles, we define an injection from the interval [0, ε0) into the type
Hydra.

From Module Hydra.O2H

Fixpoint iota (a : T1) : Hydra :=

match a with

| zero => head

| cons c n b => node (hcons_mult (iota c) (S n) (iotas b))

end

with iotas (a : T1) : Hydrae :=

match a with

| zero => hnil

| cons a0 n b => hcons_mult (iota a0) (S n) (iotas b)

end.

For instance Fig. 5.1 shows the image by ι of the ordinal ωω+2+ωω×2+ω+1
The following lemma (proved in Hydra.O2H.v) maps canonical sequences

to rounds of hydra battles.

Lemma canonS_iota i a :

nf a -> a <> 0 -> iota a -1-> iota (canon a (S i)).

The next step of our development extends this relationship to the order <
on [0, ε0) on one side, and hydra battles on the other side.

../theories/html/hydras.Hydra.O2H.html
../theories/html/hydras.Hydra.O2H.html

108 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

•
• •• •

• • •

Figure 5.1: The hydra ι(ωω+2 + ωω × 2 + ω + 1)

Lemma path_to_round_plus a s b :

path_to b s a -> nf a -> iota a -+-> iota b.

As a corollary, we are now able to transform any inequality β < α < ε0 into
a (free) battle.

Lemma LT_to_round_plus a b : b t1< a -> iota a -+-> iota b.

5.4 A proof of impossibility
We now have the tools for proving that there exists no variant bounded by some
µ < ε0 for proving the termination of all battles. The proof we are going to
show is a proof by contradiction. It can be considered as a generalization of the
proofs described in sections 2.4.3 on page 45 and 3.8.2 on page 62.

In the module Hydra.Epsilon0_Needed_Generic, we assume there exists
some variant m bounded by some ordinal µ < ε0. This part of the development
is parameterized by some class B of battles, which will be instantiated later to
free or standard.
From Hydra.Hydra_Definitions:

Class BoundedVariant {A:Type}{Lt:relation A}

{Wf: well_founded Lt}{B : Battle}

{m: Hydra -> A} (Var: Hvariant Wf B m)(mu:A):=

{ m_bounded: forall h, Lt (m h) mu }.

Let us assume there exists such a variant:

Section Bounded.

Context (B: Battle)

(mu: T1)

(Hmu: nf mu)

(m : Hydra -> T1)

(Var : Hvariant T1_wf B m)

(Hy : BoundedVariant Var mu).

Hypothesis m_decrease : forall i h h', round_n i h h'-> m h' t1< m h.

../theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html
../theories/html/hydras.Hydra.~Hydra_Definitions.html

5.4. A PROOF OF IMPOSSIBILITY 109

Remark 5.4 The hypothesis m_decrease is not provable in general, but is sat-
isfied by the free and standard kinds of battles. This trick allows to “factorize”
our proofs of impossibility.

First, we prove that m(ι(α)) is always greater than or equal to α, by trans-
finite induction over α.

Lemma m_ge_0 alpha: nf alpha -> alpha t1<= m (iota alpha).

• If α = 0, the inequality trivially holds

• If α is the successor of some ordinal β, the inequality β ≤ m(ι(β)) holds
(by induction hypothesis). But the hydra ι(α) is transformed in one round
into ι(β), thus m(ι(β)) < m(ι(α)). Hence β < m(ι(α)), which implies
α ≤ m(ι(α))

• If α is a limit ordinal, then α is the least upper bound of the set of all the
{α}(i). Thus, we have just to prove that {α}(i) < m(ι(α)) for any i.

– Let i be some natural number. By the induction hypothesis, we
have {α}(i) ≤ m(ι({α}(i))). But the hydra ι(α) is transformed into
ι({α}(i)) in one round, thus m(ι({α}(i))) < m(ι(α)), by our hypoth-
esis m_decrease.

Please note that the impossibility proofs of sections 2.4.3 on page 45 and
3.8.2 on page 62 contain a similar lemma, also called m_ge. We are now able to
build a counter-example.

Definition big_h := iota mu.

Definition beta_h := m big_h.

Definition small_h := iota beta_h.

Lemma mu_beta_h : acc_from mu beta_h.

Proof. apply LT_acc_from, m_bounded. Qed.

Corollary m_ge_generic : m big_h t1<= m small_h.

Proof. apply m_ge_0, nf_m. Qed.

End Bounded.

The (big) rest of the proof is dedicated to prove formally the converse in-
equality m small_h t1< m big_h.

5.4.1 The case of free battles
Let us now consider that B is instantiated to free (which means that we are
considering proofs of termination of all battles). The following lemmas are
proved in Module Hydra.Epsilon0_Needed_Free. The case B = standard is
studied in section 5.5 on page 111.

Section Impossibility_Proof.

Context (mu: T1)

../theories/html/hydras.Hydra.Epsilon0_Needed_Free.html

110 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

(Hmu: nf mu)

(m : Hydra -> T1)

(Var : Hvariant T1_wf free m)

(Hy : BoundedVariant Var mu).

Let big_h := big_h mu.

Let small_h := small_h mu m.

1. The following lemma is an application of m_ge_generic, since free satisfies
trivially the hypothesis m_decrease (see page 108).

Lemma m_ge : m big_h t1<= m small_h.

Proof.

apply m_ge_generic with (1 := Hy).

(* ... *)

2. From the hypothesis Hy, we have m big_h t1< mu

3. By Lemma LT_to_round_plus, we get a (free) battle from big_h = iota mu

to small_h = iota (m big_h).

Lemma big_to_small : big_h -+-> small_h.

Proof.

unfold big_h, small_h. apply LT_to_round_plus; auto.

unfold beta_h. apply (m_bounded big_h); auto.

Qed.

4. From the hypotheses on m, we infer:

Lemma m_lt : m small_h t1< m big_h.

Proof. apply m_variant_LT, big_to_small. Qed.

5. From lemmas m_ge and m_lt, and the irreflexivity of <, we get a contra-
diction.

Fact self_lt_free : m big_h t1< m big_h .

Proof.

apply LE_LT_trans with (m small_h).

- apply m_ge.

- apply m_lt.

Qed.

Theorem Impossibility_free : False.

Proof. apply (LT_irrefl self_lt_free). Qed.

End Impossibility_Proof.

We have now proved there exists no bounded variant for the class of free
battles.

5.5. THE CASE OF STANDARD BATTLES 111

Check Impossibility_free.

Impossibility_free

: forall (mu : T1) (m : Hydra -> T1)

(Var : Hvariant T1_wf free m),

BoundedVariant Var mu -> False

G Please look at the Gaia version of this theorem in Sect. 7.4.5 on page 159.

5.5 The case of standard battles
One may wonder if our theorem holds also in the framework of standard battles.
Unfortunately, its proof relies on the lemma LT_to_round_plus of Module Hy-
dra.O2H.

Lemma LT_to_round_plus a b : b t1< a -> iota a -+-> iota b.

This lemma builds a battle out of any inequality β < α. It is a straightfor-
ward application of LT_path_to of Module Epsilon0.Paths:

Lemma LT_path_to (alpha beta : T1) :

beta t1< alpha -> {s : list nat | path_to beta s alpha}.

The sequence s, used to build the sequence of replication factors of the battle,
depends on α and β, so we cannot be sure that the generated battle is a genuine
standard battle.

The solution to this issue comes once again from Ketonen and Solovay’s arti-
cle [KS81]. Instead of considering plain paths, i.e. sequences α0 = α, α1, . . . , αk =
β where αj+1 is equal to {αj}(ij) where ij is any natural number, we consider
various constraints on these sequences. In particular, a path is called standard
if ij+1 = ij +1 for every j < k. It corresponds to a “segment” of some standard
battles. Please note that the vocabulary on paths is ours, but all the concepts
come really from [KS81].

In Coq, standard paths can be defined as follows.
From Module Epsilon0.Paths

Inductive standard_path_to (j:nat)(beta : T1): nat -> T1 -> Prop :=

| std_1 : forall i alpha,

alpha <> zero ->

beta = canon alpha i -> j = i -> i <> 0 ->

standard_path_to j beta i alpha

| std_S : forall i alpha,

standard_path_to j beta (S i) (canon alpha i) ->

standard_path_to j beta i alpha.

Definition standard_path i alpha j beta :=

standard_path_to j beta i alpha.

../theories/html/hydras.Hydra.O2H.html
../theories/html/hydras.Hydra.O2H.html
../theories/html/hydras.Epsilon0.Paths.html
../theories/html/hydras.Epsilon0.Paths.html

112 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

In the mathematical text and figures, we shall use the notation α −→
i,j

β for

the proposition (standard_path i α j β). In [KS81] the notation is α ∗−→
i
β for

the proposition ∃j, i < j ∧ α −→
i,j

β.
Our goal is now to transform any inequality β < α < ε0 into a standard path

α −→
i,j

β for some i and j, which corresponds to a standard battle from ι(α) (at

time i) to ι(β) (at time j) . Following [KS81], we proceed in two stages:

1. we simulate plain (free) paths from α to β with paths made of steps
(γ, {γ}(n)), with the same n all along the path.

2. we simulate any such path by a standard path.

5.5.1 Paths with a constant index
First of all, paths with a constant index enjoy nice properties. They are defined
as paths where all the ij are equal to the same natural number i, for some i > 0.

Like in [KS81], we shall use the notation α −→
i
β for denoting such a path,

also called an i-path.

Definition const_pathS i :=

clos_trans_1n T1 (fun alpha beta => alpha <> zero /\

beta = canon alpha (S i)).

Definition const_path i alpha beta :=

match i with

0 => False

| S j => const_pathS j alpha beta

end.

A most interesting property of i-paths is that we can “upgrade” their index,
as stated by K.&S.’s Corollary 12.
From Module Epsilon0.Paths

Corollary Cor12 (alpha : T1) : nf alpha ->

forall beta i n, beta t1< alpha ->

i < n ->

const_path (S i) alpha beta ->

const_path (S n) alpha beta.

Proof.

transfinite_induction_lt alpha.

(* ... *)

We also use a version of Cor12 with large inequalities.

Corollary Cor12_1 (alpha : T1) :

nf alpha ->

forall beta i n, beta t1< alpha ->

i <= n ->

const_path (S i) alpha beta ->

const_path (S n) alpha beta.

../theories/html/hydras.Epsilon0.Paths.html

5.5. THE CASE OF STANDARD BATTLES 113

Cor12 is a consequence of the following theorem (numbered 2.4 in Ketonen
and Solovay’s article), proven by transfinite induction on α.

Theorem KS_thm_2_4 (lambda : T1) :

nf lambda -> T1limit lambda ->

forall i j, (i < j)%nat ->

const_path 1 (canon lambda (S j)) (canon lambda (S i)).

Proof.

transfinite_induction lambda.

(* ... *)

5.5.1.1 Sketch of proof of Cor12

Cor12 is also proved by transfinite induction on α. Let us give a sketch of its
proof 1

Let us consider a path α −→
i
β (i > 0). Its first step is the pair (α, {α}(i)),

We have {α}(i) < α and {α}(i) −→
i
β. Let n be any natural number such that

n > i. By the induction hypothesis, there exists a path {α}(n) −→
i
β.

• If α is a successor ordinal γ+1, then {α}(n) = {α}(i) = γ. Thus we have
a path α −→

n
γ −→

n
β

• If α is a limit ordinal, we apply Theorem KS_thm_2_4 (see above).

The proof of the limit case, is decomposed into a sequence of path con-
structions leading to α −→

n
β.

1. α −→
n

{α}(n) (single step path)

2. {α}(n) −→
1

{α}(i) (by Theorem_2_4),

3. {α}(n) −→
n

{α}(i) (applying the induction hypothesis to the preceding
path);

4. {α}(i) −→
n
β (applying the induction hypothesis)

5. α −→
n
β (by composition of 1, 3, and 4).

Remark 5.5 Cor12 “casts” i-paths into n-paths for any n > i. But the obtained
n-path can be much longer than the original i-path. The following exercise will
give an idea of this increase.

Exercise 5.4 Prove that the length of the i+ 1-path from ωω to ωi is 1 + (i+
1)(i+1), for any i. Note that the i-path from ωω to ωi is only one step long.

1This proof sketch is a slight simplification of the formal proof script: The strictly positive
indexes i and n stand for the terms (S i) and (S n). We do not explicit the (simpler) case
where the considered path is made of only one step.

114 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Why is Cor12 so useful? Let us consider two ordinals β < α < ε0. By
induction on α, we decompose any inequality β < α into β < {α}(i) < α, where
i is some natural number. Applying corollary Cor12' we build a n-path from β
to α, where n is the maximum of the indices i met in the induction.

Lemma 1, Section 2.6 of [KS81] is naturally expressed in terms of Coq’s sig
construct.

Lemma Lemma2_6_1 (alpha : T1) :

nf alpha ->

forall beta, beta t1< alpha ->

{n:nat | const_path (S n) alpha beta}.

Proof.

transfinite_induction alpha.

(* ... *)

Defined.

Intuitively, Lemma 2_6_1 shows that if β < α < ε0, then there exists a
battle from ι(α) to ι(β) where the replication factor is constant, although large
enough.

G Corollary Cor12 and Lemma Lemma2_6_1 are also available in gaia_hy-
dras.GPaths (please see Sect. 7.3.3 on page 151).

5.5.2 Casting paths with a constant index into a standard
path

The article [KS81] contains the following lemma, which allows us to simulate
i-paths by [i+ 1, j]-paths, where j is large enough.

Lemma constant_to_standard (alpha beta : T1) (n : nat):

nf alpha -> const_pathS n alpha beta ->

{l : nat | standard_gnaw (S n) alpha l = beta}.

5.5.2.1 Sketch of proof of constant_to_standard_path

Our proof follows the proof by Ketonen and Solovay, including its organization
as a sequence of lemma. Since it is a non-trivial proof, we will comment its
main steps below (see Figure 5.2 on the next page to Figure 5.5 on page 116).

Preliminaries

Please note that, given an ordinal α : T1, and two natural numbers i and l, there
exists at most a standard path α ∗−−−→

i,i+l
β. The following function computes β

from α, i and l.

Fixpoint standard_gnaw (i:nat)(alpha : T1)(l:nat): T1 :=

match l with

| 0 => alpha

| S m => standard_gnaw (S i) (canon alpha i) m

end.

../theories/html/gaia_hydras.GPaths.html
../theories/html/gaia_hydras.GPaths.html

5.5. THE CASE OF STANDARD BATTLES 115

By transfinite induction over α, we prove that the ordinal 0 is reachable from
any ordinal α < ε0 by some standard path.

Lemma standard_path_to_zero:

forall alpha i, nf alpha -> alpha <> zero ->

{j: nat | standard_path (S i) alpha j zero}.

Now, let us consider two ordinals β < α < ε0. Let p be some (n + 1)-path
from α to β.

Section Constant_to_standard_Proof.

Variables (alpha beta: T1) (n : nat).

Hypotheses (Halpha: nf alpha) (Hpos : zero t1< beta)

(Hpa : const_pathS n alpha beta).

Applying standard_path_to_zero, 0 is reachable from α by some standard
path.

α β
n+ 1

+
0

n
+
1

n+ 2 n+ 3
. . .

n+ p+ 1

Figure 5.2: A nice proof (1)

Since comparison on T1 is decidable, one can compute the last step γ of the
standard path from (α, n+ 1) such that β ≤ γ. Let l be the length of the path
from α to γ. This step of the proof is illustrated in figure 5.3 2.

α β

. . .

γ δ
n+

1
n+ 2

n
+

l

n+ l + 1

n+ 1

+

≥ >

Figure 5.3: A nice proof (2)

• If β = γ, it’s OK! We have got a standard path from α to β with successive
indices n+ 1, n+ 2, . . . , n+ l + 1

2Please note that in these figures, smaller ordinals are represented on the right side!

116 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

• Otherwise, β < γ. Let us consider δ = {γ}(n+ l + 1). By applying several
times lemma Cor12, one converts every path of Fig 5.3 into a n+ l+1-path
(see figure 5.4).
But γ is on the n + l + 1-path from α to β. As shown by figure 5.5, the
ordinal δ, reachable from γ in one single step, must be greater than or
equal to β, which contradicts our hypothesis β < γ.

α β

. . .

γ δ
n
+

l
+

1+

n + l + 1

+

n
+

l
+

1

+
n + l + 1

1

n+ l + 1

+

> >

Figure 5.4: A nice proof (3)

α β

. . .

γ δ
n
+

l
+

1+

n + l + 1

+

n
+

l +
1

+

n+ l + 1

1

n+ l + 1

+

n + l + 1

+ >

Figure 5.5: A nice proof (4)

The only possible case is thus β = γ, so we have got a standard path from α to
β.

Lemma constant_to_standard_0 :

{l : nat | standard_gnaw (S n) alpha l = beta}.

End Constant_to_standard_Proof.

Here is the full statement of the conversion from constant to standard paths.

Lemma constant_to_standard_path

(alpha beta : T1) (i : nat):

nf alpha -> const_pathS i alpha beta -> zero t1< alpha ->

{j:nat | standard_path (S i) alpha j beta}.

Applying Lemma2_6_1 and constant_to_standard_path, we get the following
corollary.

Corollary LT_to_standard_path (alpha beta : T1) :

beta t1< alpha ->

{n : nat & {j:nat | standard_path (S n) alpha j beta}}.

5.5. THE CASE OF STANDARD BATTLES 117

5.5.3 Back to hydras
We are now able to complete our proof that there exists no bounded variant for
proving the termination of standard hydra battles. This proof can be consulted
in the module Hydra.Epsilon0_Needed_Std. Please note that it has the same
global structure as in section 5.4.1

Applying the lemmas Lemma2_6_1 of the module Epsilon0.pathS and constant_to_standard_path,
we can convert any inequality β < α < ε0 into a standard path from α to β,
then into a fragment of a standard battle from ι(α) to ι(β), hence the inequality
m(ι(β)) < m(ι(α)).

From Module Hydra.Epsilon0_Needed_Std

Lemma LT_to_standard_battle :

forall alpha beta,

beta t1< alpha ->

exists n i, rounds standard n (iota alpha) i (iota beta).

Now, please consider the following context:

Section Impossibility_Proof.

Context (mu: T1)

(m : Hydra -> T1)

(Var : Hvariant T1_wf standard m)

(Hy : BoundedVariant Var mu).

Let big_h := big_h mu.

Let small_h := small_h mu m.

In the same way as for free battles, we import a large inequality from the
module Epsilon0_Needed_Generic. (see Sect. 5.4 on page 109).

Lemma m_ge : m big_h t1<= m small_h.

If remains to prove the following strict inequality, in order to have a contra-
diction.

Lemma m_lt : m small_h t1< m big_h.

Sketch of proof: Let us recall that big_h = ι(µ) and small_h = ι(m(big_h)).
Since m(big_h) < µ, there exists a standard path from µ to m(big_h), hence

a standard battle from ι(µ) to ι(m(big_h)), i.e. from big_h to small_h.
Sincem is assumed to be a variant for standard battles, we get the inequality

m(small_h) < m(big_h).

Fact self_lt_standard : m big_h t1< m big_h.

Proof.

apply LE_LT_trans with (m small_h);[apply m_ge | apply m_lt].

Qed.

Theorem Impossibility_std: False.

../theories/html/hydras.Hydra.Epsilon0_Needed_Std.html
../theories/html/hydras.Epsilon0.Paths.html#Lemma2_6_1
../theories/html/hydras.Epsilon0.Paths.html#constant_to_standard_path
../theories/html/hydras.Hydra.Epsilon0_Needed_Std.html#LT_to_standard_battle
../theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html

118 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Proof. apply (LT_irrefl self_lt_standard). Qed.

End Impossibility_Proof.

Check Impossibility_std.

Impossibility_std

: forall (mu : T1) (m : Hydra -> T1)

(Var : Hvariant T1_wf standard m),

BoundedVariant Var mu -> False

G Please look at the Gaia version of this theorem in Sect. 7.4.5 on page 159.

5.5.4 Remarks
We are grateful to J. Ketonen and R. Solovay for the high quality of their
explanations and proof details. Our proof follows tightly the sequence of lemmas
in their article, with a focus on constructive aspects. Roughly speaking, our
implementation builds, out of a hypothetical variantm, bounded by some ordinal
µ < ε0, a hydra big_h which verifies the impossible inequality m(big_h) <
m(big_h).

On may ask whether the preceding results are too restrictive, since they
refer to a particular data type T1. In fact, our representation of ordinals
strictly less than ε0 is faithful to their mathematical definition, at least Kurt
Schütte’s [Sch77], as proved in Chapter 8 on page 161. (please see also the
module hydras.Schutte.Correctness_E0).

Thus, we can infer that our theorems can be applied to any well order.

Project 5.1 Study a possible modification of the definition of a variant (for
standard battles).

• The variant is assumed to be strictly decreasing on configurations reachable
from some initial configuration where the replication factor is equal to 0

• The variant may depend on the number of the current round.

In other words, its type should be nat -> Hydra -> T1, and it must verify the
inequality m (S i)h′ < mih whenever the configuration (i, h) is reachable from
some initial configuration (0, h0) and h is transformed into h' in the considered
round. Can we still prove the theorems of section 5.5 with this new definition?

../theories/html/hydras.Schutte.Correctness_E0.html

Chapter 6

Large sets and rapidly
growing functions

Remark 6.1 Some notations (mainly names of fast-growing functions) of our
development may differ slightly from the literature. Although this fact does not
affect our proofs, we are preparing a future version where the names Fα, fα,
Hα, etc., are fully consistent with the cited articles.

In this chapter, we try to feel how long a standard battle can be. To be
precise, for any ordinal α < ε0 and any positive integer k, we give a minoration
of the number of steps of a standard battle which starts with the hydra ι(α)
and the replication factor k.

We express this number in terms of the Hardy hierarchy of fast-growing
functions [WB87, Wai70, KS81, Prö13]. From the Coq user’s point of view,
such functions are very attractive: they are defined as functions in Gallina, and
we can apply them in theory, but they are so complex that you will never be
able to look at the result of the computation. Thus, our knowledge on these
functions must rely on proofs, not tests. In our development, we use often the
rewriting rules generated by Coq’s Equations plug-in.

6.1 Definitions
Definition 6.1 Let 0 < α < ε0 be any ordinal, and s = 〈s1, s2, . . . , sN 〉 a finite
sequence of strictly positive natural numbers.

We say that s is α-large if the sequence 〈α0 = α, . . . , αi+1 = {αi}(i+ 1), . . . 〉
leads to 0. We say also that s is minimally α-large (in short: α-mlarge) if s is
α-large and every strict prefix of s leads to a non-zero ordinal (cf Sect. 5.3.1 on
page 106).

Remark 6.2 Ketonen and Solovay [KS81] consider large finite sets of natural
numbers, but they are mainly used as sequences. Thus, we chose to represent
them explicitely as (sorted) lists.

The following function “gnaws” an ordinal α, following a sequence of indices
(ignoring the 0s).

119

120 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

From Module Epsilon0.Paths

Fixpoint gnaw (alpha : T1) (s: list nat) :=

match s with

| nil => alpha

| (0::s') => gnaw alpha s'

| (S i :: s') => gnaw (canon alpha (S i)) s'

end.

From Module Epsilon0.Large_Sets

Definition largeb (alpha : T1) (s: list nat) :=

match (gnaw alpha s)

with zero => true | _ => false end.

Definition large (alpha : T1) (s : list nat) : Prop :=

largeb alpha s.

Minimal large sequences can be directly defined in terms of the predicate
path_to (5.3.1 on page 106) which already prohibits paths containing non-final
zeros.
From Module Epsilon0.Large_Sets

Definition mlarge alpha (s: list nat) := path_to zero s alpha.

Let us consider two integers k and l, such that 0 < k < l. In order to check
whether the interval [k, l] is minimally large for α, it is enough to follow from
α the path associated with the interval [k, l) and verify that the last ordinal we
obtain is equal to 1.

6.1.1 Examples
For instance the interval [6, 70] leads ω2 to ω× 2+ 56. Thus this interval is not
ω2-large.
From Module Epsilon0.Large_Sets_Examples

Compute pp (gnaw (T1omega * T1omega) (interval 6 70)).

= (ω * 2 + 56)%pT1

: ppT1

The interval [6, 700] is ω2-large, but not ω2-mlarge, since [6, 699] is also
ω2-large.

Compute (gnaw (T1omega * T1omega) (interval 6 700)).

= zero

: T1

Compute (gnaw (T1omega * T1omega) (interval 6 699)).

= zero

: T1

../theories/html/hydras.Epsilon0.Paths.html#gnaw
../theories/html/hydras.Epsilon0.Large_SetsPaths.html#gnaw
../theories/html/hydras.Epsilon0.Large_Sets.html#mlarge
../theories/html/hydras.Epsilon0.Large_Sets_Examples.html#mlarge

6.2. LENGTH OF MINIMAL LARGE SEQUENCES 121

The following lemma relates minimal largeness with the function gnaw.

Lemma mlarge_iff alpha x (s:list nat) :

s <> nil -> ~ In 0 (x::s) ->

mlarge alpha (x::s) <-> gnaw alpha (but_last x s) = one.

From Module Epsilon0.Large_Sets_Examples

Example Ex1 : mlarge (T1omega * T1omega) (interval 6 510).

Proof with try (auto with arith || discriminate).

unfold interval; simpl Peano.minus.

do 2 rewrite iota_from_unroll; rewrite mlarge_iff ...

repeat rewrite not_in_cons ...

Qed.

6.2 Length of minimal large sequences
Now, let us consider some natural number k > 0 and an ordinal 0 < α < ε0.
We would like to compute a number l such that the interval [k, l] is α-mlarge.
So, the standard battle starting with ι(α) and the replication factor k will end
after (l − k + 1) steps.

First, we notice that this number l exists, since the segment [0, ε0) is well-
founded and {α}(i) < α for any i and α > 0. Moreover, it is unique:
From Module Epsilon0.Large_Sets

Lemma mlarge_unicity alpha k l l' :

mlarge alpha (interval (S k) l) ->

mlarge alpha (interval (S k) l') ->

l = l'.

Thus, we would like to define a function, parameterized by α which associates
to any strictly positive integer k the number l such that the interval [k, l] is α-
mlarge. It would be fine to write in Gallina a definition like this:

Function L_ (alpha: E0) (i:nat) : nat := ...

But we do not know how to fill the dots yet … In the next section, we will
use Coq to reason about the specification of L, prove properties of any function
which satisfies this specification. In Sect. 6.2.4, we use the coq-equations plug-in
to define L_, then prove its correctness w.r.t. its specification.

6.2.1 Formal specification
Let 0 < α < ε0 be an ordinal term. We consider any function which maps any
strictly positive integer k to the number l, where the interval [k, l) is α-mlarge.

Remark 6.3 In [KS81] Ketonen and Solovay consider the least natural number
l where the interval [k, l] (l included) is α-large, and call Hα the function which
maps k to l. We chose to consider intervals [l, k) instead of [l, k] in order to
simplify some statements and proofs in composition lemmas associated with
the ordinals of the form α × i and ωα × i + β. Clearly, both approaches are
related through the equality Lα(k) = Hα(k) + 1, for any non-null α and k.

../theories/html/hydras.Epsilon0.Large_Sets_Examples.html
../theories/html/hydras.Epsilon0.Large_Sets.html

122 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Our specification of the function L is as follows:
From Module Epsilon0.Large_Sets

Inductive L_spec : T1 -> (nat -> nat) -> Prop :=

L_spec0 :

forall f, (forall k, f (S k) = S k) -> L_spec zero f

| L_spec1 : forall alpha f,

alpha <> zero ->

(forall k,

mlarge alpha (interval (S k) (Nat.pred (f (S k))))) ->

L_spec alpha f.

To do 6.1 Check if the functions Lα are the same as [KS81]’ functions fα (p.
297).

Note that, for α 6= 0, the value of f(0) is not specified. Nevertheless, the
restriction of f to the set of strictly positive integers is unique (up to extension-
ality).

Lemma L_spec_unicity alpha f g :

L_spec alpha f -> L_spec alpha g -> forall k, f (S k) = g (S k).

6.2.2 Abstract properties
Let us now prove properties of any function f (if any) which satisfies L_spec.
We are looking for properties which could be used for writing equations and
prove the correctness of the function generated by the coq-equations plug-in.
Moreover, they will give us some examples (for small values of α).

The properties we consider are defined in Prelude.Iterates.

Definition strict_mono f := forall n p, n < p -> f n < f p.

Definition dominates_from n g f := forall p, n <= p -> f p < g p.

Definition fun_le f g := forall n:nat, f n <= g n.

Infix "<<=" := fun_le (at level 60).

Definition dominates g f := exists n : nat, dominates_from n g f .

Infix ">>" := dominates (at level 60).

Definition dominates_strong g f := {n : nat | dominates_from n g f}.

Infix ">>s" := dominates_strong (at level 60).

Our exploration of the Lα s considers the usual cases of a proof by transfinite
induction: zero, successors and limit ordinals. The lemmas we are going to prove
will be applied in a big proof by induction in Sect 6.2.4.1 on page 128.

6.2.2.1 The ordinal zero

The base case is directly a consequence of the specification.

Lemma L_zero_inv f : L_spec zero f -> forall k, f (S k) = S k.

../theories/html/hydras.Epsilon0.Large_Sets.html
../theories/html/hydras.Prelude.Iterates.html#fun_le

6.2. LENGTH OF MINIMAL LARGE SEQUENCES 123

6.2.2.2 Successor ordinals

Let β be some ordinal, and assume the arithmetic function f satisfies the spec-
ification (L_spec β). Let k be any natural number. Any path from succβ to 0
starting at k + 1 can be decomposed into a first step from succβ to β, then a
path from β at k + 2 to 0. By hypothesis the interval [k + 2, f(k + 2) − 1] is
β-mlarge. But the interval [k + 1, f(k + 2)− 1] is the concatenation of the sin-
gleton {k+1} and the interval [k+2, f(k+2)−1]. So, the function λ k. f(k+1)
satisfies the specification L_specβ.

Note that our decomposition of intervals works only if the intervals we con-
sider are not empty. In order to ensure this property, we assume that f k is
always greater than k, which we note S <<= f, or (fun_le S f).

From Module Epsilon0.Large_Sets

Section succ.

Variables (beta : T1) (f : nat -> nat).

Hypotheses (Hbeta : nf beta)

(f_mono : strict_mono f)

(f_Sle : S <<= f)

(f_ok : L_spec beta f).

Definition L_succ := fun k => f (S k).

Lemma L_succ_mono : strict_mono L_succ.

Lemma L_succ_Sle : S <<= L_succ.

Lemma L_succ_ok : L_spec (succ beta) L_succ.

End succ.

6.2.2.3 Limit ordinals

Let λ < ε0 be any limit ordinal. In a similar way as for successors, we decompose
any path from λ into a first step to {λ}(k), followed by a path to 0. In the
following section, we assume that there exists a correct function computing
L{λ}(k) for any strictly positive k.

Section lim.

Variables (lambda : T1)

(Hnf : nf lambda)

(Hlim : T1limit lambda)

(f : nat -> nat -> nat)

(H : forall k, L_spec (canon lambda (S k)) (f (S k))).

Remark canon_not_null : forall k, canon lambda (S k) <> zero.

Definition L_lim k := f k (S k).

Lemma L_lim_ok : L_spec lambda L_lim.

../theories/html/hydras.Epsilon0.Large_Sets.html

124 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

End lim.

6.2.3 First results
Applying the previous lemmas on successors and limit ordinals, we obtain a few
correct implementations of (L_spec α) for small values of α.

6.2.3.1 Finite ordinals

By iterating the functional L_succ, we get a realization of (L_spec i) for any
natural number i.

Definition L_fin i := fun k => (i + k)%nat.

Lemma L_fin_ok i : L_spec (\F i) (L_fin i).

Proof.

induction i.

(* ... *)

6.2.3.2 The first limit ordinal ω

The lemmas L_fin_ok and L_lim_ok allow us to get by diagonalization a correct
implementation for L_spec omega.

Definition L_omega k := S (2 * k)%nat.

Lemma L_omega_ok : L_spec T1omega L_omega.

Proof.

pose (H:= L_lim_ok T1omega nf_omega refl_equal L_fin

(fun i => L_fin_ok (S i))).

eapply L_spec_compat with (1:=H);

intro ; unfold L_lim, L_fin, L_omega; abstract lia.

Qed.

6.2.3.3 Towards ω2

We would like to get exact formulas for the ordinal ω2, a.k.a. φ0(2). This ordinal
is the limit of the sequence ω × i (i ∈ N). Thus, we have to study ordinals of
this form, then use our lemma on limits.

The following lemma establishes a path from ω × (i+ 1) to ω × i.

Lemma path_to_omega_mult (i k:nat) :

path_to (T1omega * i)

(interval (S k) (2 * (S k))%nat)

(T1omega * (S i)).

Let us consider a path from ω × (i + 1) to 0 starting at k + 1. A first “big
step” will lead to ω × i at 2(k + 1). If i > 0, the next jump leads to ω × (i− 1)
at 2(2(k + 1)) + 1, etc.

The following lemma expresses the length of the mlarge sequences associated
with any finite multiple of ω.

6.2. LENGTH OF MINIMAL LARGE SEQUENCES 125

Lemma omega_mult_mlarge_0 i : forall k,

mlarge (T1omega * (S i))

(interval (S k)

(Nat.pred (iterate (fun p => S (2 * p)%nat)

(S i)

(S k)))).

From Module Epsilon0.Large_Sets

Definition L_omega_mult i (x:nat) := iterate L_omega i x.

Compute L_omega_mult 8 5.

= 1535

: nat

More generally, we prove the equality Lω×i(k) = 2i × (k + 1)− 1.

Lemma L_omega_mult_eqn (i : nat) :

forall (k : nat),

(0 < k)%nat -> L_omega_mult i k = (exp2 i * S k - 1)%nat.

Correctness of the function L_omega_mult is asserted through the following
lemma.

Lemma L_omega_mult_ok (i: nat) :

L_spec (T1omega * i) (L_omega_mult i).

By diagonalization, we obtain a simple formula for Lω2 .

Definition L_omega_square k :=

iterate (fun z => S (2 * z)%nat) k (S k).

Compute L_omega_square 8.

= 2559

: nat

Lemma L_omega_square_eqn k :

(0 < k)%nat ->

L_omega_square k = (exp2 k * (k + 2) - 1)%nat.

Lemma L_omega_square_ok:

L_spec (T1omega * T1omega) L_omega_square.

6.2.3.4 Going further

Let us consider a last example, “computing” Lω3 . Let us study the canonical
sequence associated with ω3, the elements of which are ω2 × i (i ∈ N1).

To this end, we prove a generic lemma, which expresses Lωα×i as an iterate
of Lωα . Note that in this lemma, we assume that the function associated with
α is strictly monotonous and greater or equal than the successor function, and
prove that Lωα×i satisfies the same properties.

../theories/html/hydras.Epsilon0.Large_Sets.html#L_omega_mult

126 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Section phi0_mult.

Variables (alpha : T1) (f : nat -> nat).

Hypotheses (Halpha : nf alpha)

(f_mono : strict_mono f)

(f_Sle : S <<= f)

(f_ok : L_spec (T1.phi0 alpha) f).

Definition L_phi0_mult i := iterate f i.

Lemma L_phi0_mult_ok i:

L_spec (T1.cons alpha i zero) (L_phi0_mult (S i)).

Lemma L_phi0_mult_Sle i: S <<= L_phi0_mult (S i).

Proof. now apply iterate_Sge. Qed.

End phi0_mult.

Let us look now at the ordinal ω2 × i, using L_phi0_mult.

Definition L_omega_square_times i := iterate L_omega_square i.

Lemma L_omega_square_times_ok i : L_spec (T1.cons 2 i zero)

(L_omega_square_times (S i)).

Proof.

apply L_phi0_mult_ok.

- auto with T1.

- apply L_omega_square_Sle.

- apply L_omega_square_ok.

Qed.

We are now ready to get an exact formula for Lω3 , by diagonalization over
Lω2×i.

Definition L_omega_cube := L_lim L_omega_square_times .

Lemma L_omega_cube_ok : L_spec (T1.phi0 3) L_omega_cube.

Proof.

unfold L_omega_cube; apply L_lim_ok; auto with T1.

- intro k; simpl canon; apply L_omega_square_times_ok.

Qed.

Lemma L_omega_cube_eqn i :

L_omega_cube i = L_omega_square_times i (S i).

Proof. reflexivity. Qed.

Thus, for instance, Lω3(3) = Lω2×4(3).

Lemma L_omega_cube_3_eq:

let N := exp2 95 in

let P := (N * 97 - 1)%nat in

L_omega_cube 3 = (exp2 P * (P + 2) - 1)%nat.

6.2. LENGTH OF MINIMAL LARGE SEQUENCES 127

This number is quite big. Using Ocaml’s float arithmetic, we can under-
approximate it by 23.8×1030 × 3.8× 1030.

let exp2 x = 2.0 ** x;;

val exp2 : float -> float = <fun>

exp2 95.0 *. 97.0 -. 1.0;;

- : float = 3.84256588194182037e+30

let n = exp2 95.0 ;;

let p = n *. 97.0 -. 1.0;;

val p : float = 3.84256588194182037e+30

Estimation :

2 ** (3.84 e+30) * 3.84 e+30.

6.2.4 Using Equations

Note that we did not define any function Lα for any α < ε0 yet. We have got
no more than a collection of proved realizations of L_spec α for a few values of
α.

Using the coq-equations plug-in by M. Sozeau [SM19], we will now define a
function L_ which maps any ordinal α < ε0 to a proven realization of L_spec α.
To this end, we represent ordinals as inhabitants of the type E0 of well-formed
ordinal terms (see Sect 4.1.7.1 on page 81). So, we define a total function L_

of type E0 -> nat -> nat, by transfinite recursion, considering the usual three
cases : α = 0, α is a successor, α is a limit ordinal.

6.2.4.1 Definition

From Module L_alpha).

From Equations Require Import Equations.

Import RelationClasses Relations.

#[global] Instance Olt : WellFounded E0lt := E0lt_wf.

#[global] Hint Resolve Olt : E0.

(** Using Coq-Equations for building a function which satisfies

[Large_sets.L_spec] *)

Equations L_ (alpha: E0) (i:nat) : nat by wf alpha E0lt :=

L_ alpha i with E0_eq_dec alpha E0zero :=

{ | left _zero => i ;

| right _nonzero

with Utils.dec (E0limit alpha) :=

{ | left _limit => L_ (Canon alpha i) (S i) ;

| right _successor => L_ (E0_pred alpha) (S i)}}.

Solve All Obligations with auto with E0.

This definition results in a bunch of automatically generated lemmas. For
instance:

../theories/html/hydras.Epsilon0.L_alpha.html#L_

128 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

About L__equation_1.

L__equation_1 :

forall (alpha : E0) (i : nat),

L_ alpha i =

L__unfold_clause_1 alpha (E0_eq_dec alpha E0zero) i

L__equation_1 is not universe polymorphic

Arguments L__equation_1 alpha i%nat_scope

L__equation_1 is transparent

Expands to: Constant L_alpha.L__equation_1

In most cases, it may be useful to write human-readable paraphrases of these
statements.

Lemma L_zero_eqn : forall i, L_ E0zero i = i.

Proof. intro i; now rewrite L__equation_1. Qed.

Lemma L_eq2 alpha i :

E0is_succ alpha -> L_ alpha i = L_ (E0_pred alpha) (S i).

Lemma L_succ_eqn alpha i :

L_ (E0_succ alpha) i = L_ alpha (S i).

Lemma L_lim_eqn alpha i :

E0limit alpha ->

L_ alpha i = L_ (Canon alpha i) (S i).

Using these three lemmas as rewrite rules, we can prove more properties of
the functions L_α.

Lemma L_finite : forall i k :nat, L_ i k = (i+k)%nat.

Lemma L_omega : forall k, L_ E0_omega k = S (2 * k)%nat.

By well-founded induction on α, we prove the following properties:

Lemma L_ge_S alpha :

alpha <> E0zero -> S <<= L_ alpha.

Theorem L_correct alpha : L_spec (cnf alpha) (L_ alpha).

Please note that the proof of L_correct applies the lemmas proven in Sec-
tions 6.2.2.1, 6.2.2.2 and 6.2.2.3. Our previous study of L_spec allowed us to
pave the way for the definition by Equations and the correctness proof.

G The module gaia_hydras.GL_alpha contains an adaptation of Epsilon0/L_al-
pha.

../theories/html/gaia_hydras.GL_alpha.html
../theories/html/hydras.Epsilon0.L_alpha.html
../theories/html/hydras.Epsilon0.L_alpha.html

6.3. A VARIANT OF THE HARDY HIERARCHY 129

6.2.4.2 Back to hydra battles

Lemma battle_length_std of Module Hydra.Battle_length relates the length
of standard battles with the functions Lα.

Lemma battle_length_std:

battle_length standard k (iota (cnf alpha)) (l-k)%nat.

Exercise 6.1 Instead of considering standard paths and battles, consider bat-
tles where the replication factor is a constant k. Please use Equations in order
to define the function that computes the length of the k-path which leads from
α to 0. Prove a few exact formulas and minoration lemmas.

6.3 A variant of the Hardy hierarchy
In order to give a feeling on the complexity of the functions Lαs, we compare
them with a better known family of functions, the Hardy hierarchy of fast grow-
ing functions, presented for instance in [Prö13].

Remark 6.4 Indeed, the functions presented in this section are a variant of
the Hardy hierarchy of functions. In the future versions of this development,
we will correct the references to the literature. For the time being, we call our
functions H ′

α in order to underline the difference from “classic” Hardy functions.

For each ordinal α below ε0, H ′
α is a total arithmetic function, defined by

transfinite recursion on α, according to three cases:

• If α = 0, then H ′
α(k) = k for any natural number k.

• If α = succ(β), then H ′
α(k) = H ′

β(k + 1) for any k ∈ N

• If α is a limit ordinal, then H ′
α(k) = H ′

({α}(k + 1))
(k) for any k ∈ N.

Remark 6.5 The “classic” definition of the Hardy hierarchy differs in the third
equation.

• If α = 0, then Hα(k) = k for any natural number k.

• If α = succ(β), then Hα(k) = Hβ(k + 1) for any k ∈ N

• If α is a limit ordinal, then Hα(k) = H
({α}(k))(k) for any k ∈ N.

6.3.1 Definition in Coq

We define a function H'_ of type E0 -> nat -> nat by transfinite induction over
the type E0 of the well formed ordinals below ε0.

From Module Epsilon0.Hprime

../theories/html/hydras.Hydra.Battle_length.html
../theories/html/hydras.Epsilon0.Hprime.html#H_

130 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Equations H'_ (alpha: E0) (i:nat) : nat by wf alpha E0lt :=

H'_ alpha i with E0_eq_dec alpha E0zero :=

{ | left _zero => i ;

| right _nonzero

with Utils.dec (E0limit alpha) :=

{ | left _limit => H'_ (Canon alpha (S i)) i ;

| right _successor => H'_ (E0_pred alpha) (S i)}}.

Solve All Obligations with auto with E0.

Lemma H'_eq1 : forall i, H'_ E0zero i = i.

Proof.

intro i; now rewrite H'__equation_1.

Qed.

Lemma H'_eq2_0 alpha i :

E0is_succ alpha ->

H'_ alpha i = H'_ (E0_pred alpha) (S i).

Lemma H'_eq3 alpha i :

E0limit alpha -> H'_ alpha i = H'_ (Canon alpha (S i)) i.

Lemma H'_eq2 alpha i :

H'_ (E0_succ alpha) i = H'_ alpha (S i).

6.3.2 First steps of the H’ hierarchy
Using rewrite rules from H'_eq1 to H'_succ_eqn, we can explore the functions
H ′

α for small values of α.

G The module gaia_hydras.GHprime contains an adaptation of Epsilon0.Hprime.

6.3.2.1 Finite ordinals

By induction on i, we prove a simple expression of H'_ (Fin i), where Fin i is
the i-th finite ordinal.

Lemma H'_Fin : forall i k : nat, H'_ (E0fin i) k = (i+k)%nat.

Proof with eauto with E0.

induction i.

- intros; simpl E0fin; simpl; autorewrite with H'_rw E0_rw ...

- intros ;simpl; autorewrite with H'_rw E0_rw ...

rewrite IHi; abstract lia.

Qed.

6.3.2.2 Multiples of ω

Since the canonical sequence of ω is composed of finite ordinals, it is easy to get
the formula associated with H ′

ω.

../theories/html/gaia_hydras.GHprime.html
../theories/html/hydras.Epsilon0.Hprime.html

6.3. A VARIANT OF THE HARDY HIERARCHY 131

Lemma H'_omega : forall k, H'_ E0_omega k = S (2 * k)%nat.

Proof with auto with E0.

intro k; rewrite H'_eq3 ...

- replace (Canon E0_omega (S k)) with (E0fin (S k)).

+ rewrite H'_Fin; abstract lia.

+ now autorewrite with E0_rw.

Qed.

Before going further, we prove a useful rewriting lemma:

Lemma H'_Plus_Fin alpha : forall i k : nat,

H'_ (alpha + i)%e0 k = H'_ alpha (i + k)%nat.

Proof.

induction i.

(* ... *)

Then, we get easily formulas for H ′
ω+i, and H ′

ω×i for any natural number i.

Lemma H'_omega_double k :

H'_ (E0_omega * 2)%e0 k = (4 * k + 3)%nat.

Proof.

rewrite H'_eq3; simpl Canon; [| now compute].

ochange (Canon (E0_omega * E0finS 1)%e0 (S k)) (E0_omega + (S k))%e0;

rewrite H'_Plus_Fin, H'_omega; abstract lia.

Qed.

Lemma H'_omega_3 k : H'_ (E0_omega * 3)%e0 k = (8 * k + 7)%nat.

Lemma H'_omega_4 k : H'_ (E0_omega * 4)%e0 k = (16 * k + 15)%nat.

Lemma H'_omega_i (i:nat) : forall k,

H'_ (E0_omega * i)%e0 k = (exp2 i * k + Nat.pred (exp2 i))%nat.

Proof.

induction i.

(* ... *)

Since ω2 is a limit ordinal, we prove the following equality:

H ′
ω2(k) = 2k+1 × (k + 1)− 1

Lemma H'_omega_sqr : forall k,

H'_ (E0_phi0 2)%e0 k = (exp2 (S k) * (S k) - 1)%nat.

6.3.2.3 New limits

Our next step would be to prove an exact formula for H ′
ωω (k). Since the canon-

ical sequence of ωω is composed of all the ωi, we first need to express H ′
ωi for

any natural number i.
Let i and k be two natural numbers. The ordinal {ω(i+ 1)}(k) is the product

ωi × k, so we need also to consider ordinals of this form.

1. First, we express H ′
ωα×(i+2) in terms of H ′

ωα×(i+1).

132 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Lemma H'_Omega_term_1 : alpha <> E0zero -> forall k,

H'_ (Omega_term alpha (S i)) k =

H'_ (Omega_term alpha i) (H'_ (E0_phi0 alpha) k).

2. Then, we prove by induction on i that H ′
ωα×(i+1) is just the (i + 1)-th

iterate of H ′
ωα .

Lemma H'_Omega_term (alpha : E0) :

forall i k,

H'_ (Omega_term alpha i) k =

iterate (H'_ (E0_phi0 alpha)) (S i) k.

3. In particular, we derive a formula for H ′
ωi+1 .

Definition H'_succ_fun f k := iterate f (S k) k.

Lemma H'_Phi0_Si : forall i k,

H'_ (E0_phi0 (S i)) k = iterate H'_succ_fun i (H'_ E0_omega) k.

4. We get now a formula for H ′
ω3 :

Lemma H'_omega_cube : forall k,

H'_ (E0_phi0 3)%e0 k = iterate (H'_ (E0_phi0 2)) (S k) k.

6.3.2.4 A numerical example

It is hard to capture the complexity of this function by looking only at this
“exact” formula. Let us consider a simple example: the number H ′

ω3(3).

Let f k := (exp2 (S k) * (S k) - 1)%nat.

Remark R0 k : H'_ (E0_phi0 3)%e0 k = iterate f (S k) k.

Proof.

ochange (E0_phi0 3) (E0_phi0 (E0_succ 2)); rewrite H'_Phi0_succ.

unfold H'_succ_fun; apply iterate_ext.

- intro x; now rewrite H'_omega_sqr.

Qed.

Thus, the number Hω3(3) can be written as four nested applications of f .

Fact F0 : H'_ (E0_phi0 3) 3 = f (f (f (f 3))).

Proof. rewrite R0; reflexivity. Qed.

In a more classical writing, this number is displayed as follows:

H ′
ω3(3) = 2(2

N+1 (N+1)) (2N+1 (N + 1))− 1

In order to make this statement more readable, we introduce a local defini-
tion.

6.3. A VARIANT OF THE HARDY HIERARCHY 133

Let N := (exp2 64 * 64 - 1)%nat.

This number looks quite big; let us compute an approximation with Ocaml:

(2.0 ** 64.0 *. 64.0 -. 1.0);;

- : float = 1.1805916207174113e+21

Fact F1 : H'_ (E0_phi0 3) 3 = f (f N).

Proof.

rewrite F0; reflexivity.

Qed.

Fact F1_simpl :

H'_ (E0_phi0 3) 3 =

(exp2 (exp2 (S N) * S N) * (exp2 (S N) * S N) - 1)%nat.

We leave as an exercise to determine the best approximation as possible of
the size of this number (for instance its number of digits). For instance, if we
do not take into account the multiplications in the formula above, we obtain
that, in base 2, the number H ′

ω3(3) has at least 210
21 digits. But it is still an

under-approximation !

Fact F3 : (exp2 (exp2 N) <= H'_ (E0_phi0 3 + 3) 0).

6.3.2.5 A formula for H ′
ωω

Now, we can get at last an exact formula for H ′
ωω .

Lemma H'_Phi0_omega :

forall k, H'_ (E0_phi0 E0_omega) k =

iterate H'_succ_fun k (H'_ E0_omega) k.

Using extensionality of the functional iterate, we also get a closed formula.

Lemma H'_Phi0_omega_exact_formula k :

H'_ (E0_phi0 E0_omega) k =

let F f i := iterate f (S i) i

in let g k := S (2 * k)%nat

in iterate F k g k.

Note that this formula contains two occurrences of the functional iterate,
the second one is in fact a second-order iteration (on type nat -> nat) and the
first one first-order (on type nat).

6.3.3 Abstract properties of H ′
α

Since pure computation seems to be useless for dealing with expressions of
the form H ′

α(k), even for small values of α and k, we need to prove theorems
for comparing H ′

α(k) and H ′
β(l), in terms of comparison between α and β on

the one hand, k and l on the other hand.
But beware of fake theorems! For instance, one could believe that H ′ is

monotonous in its first argument. The following proof shows this is false.

134 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Remark H'_non_mono1 :

~ (forall alpha beta k,

(alpha o<= beta)%e0 ->

(H'_ alpha k <= H'_ beta k)%nat).

Proof.

intros H ;specialize (H 42 E0_omega 3).

(* ... *)

On the contrary, the functions of the H ′ hierarchy have the following five
properties [KS81]: for any α < ε0,

• the function H ′
α is strictly monotonous : For all n, p ∈ N, n < p ⇒

H ′
α(n) < H ′

α(p).

• If α 6= 0, then for every n, n < H ′
α(n).

• The function H ′
α is pointwise less or equal than H ′

α+1

• For any n ≥ 1, H ′
α(n) < H ′

α+1(n). We say that H ′
α+1 dominates H ′

α from
1.

• For any n and β, if α −→
n
β, then H ′

β(n) ≤ H ′
α(n).

In Coq, we follow the proof of [KS81]. This proof is mainly a single proof by
transfinite induction on α of the conjunction of the five properties. For each α,
the three cases : α = 0, α is a limit, and α is a successor are considered. Inside
each case, the five sub-properties are proved sequentially, using the abstract
properties defined in Sect 6.2.2 on page 122

Section Proof_of_Abstract_Properties.

Record P (alpha:E0) : Prop :=

mkP {

PA : strict_mono (H'_ alpha);

PB : alpha <> E0zero -> forall n, (n < H'_ alpha n)%nat;

PC : H'_ alpha <<= H'_ (E0_succ alpha);

PD : dominates_from 1 (H'_ (E0_succ alpha)) (H'_ alpha);

PE : forall beta n, Canon_plus n alpha beta ->

(H'_ beta n <= H'_ alpha n)%nat}.

Theorem P_alpha : forall alpha, P alpha.

Proof.

intro alpha; apply well_founded_induction with E0lt.

alpha: E0

well_founded E0lt

alpha: E0

forall x : E0, (forall y : E0, y o< x -> P y) -> P x

(* ... *)

Qed.

End Proof_of_Abstract_Properties.

6.3. A VARIANT OF THE HARDY HIERARCHY 135

Using a few lemmas à la Ketonen-Solovay, we prove that if α < β, then
H ′

β eventually dominates H ′
α. We let the reader look at the proof (Section

Proof_of_H'_mono_l of Epsilon0.Hprime).

About H'_dom.

H'_dom :

forall alpha beta : E0,

alpha o< beta -> H'_ beta >>s H'_ alpha

H'_dom is not universe polymorphic

Arguments H'_dom alpha beta H_alpha_beta

H'_dom is opaque

Expands to: Constant Hprime.H'_dom

6.3.4 Comparison between L_ and H'_

By well-founded induction on α, we prove that H ′
α(i) ≤ Lα(i+ 1) for any i.

From Module Epsilon0.L_alpha

Theorem H'_L_ alpha :

forall i:nat, (H'_ alpha i <= L_ alpha (S i))%nat.

6.3.4.1 Back to hydras

The following theorem relates the length of (standard) battles with the the H ′

family of fast growing functions.
From Module Hydra.Hydra_Theorems

Theorem battle_length_std_Hardy (alpha : E0) :

alpha <> E0zero ->

forall k , 1 <= k ->

exists l: nat,

H'_ alpha k - k <= l /\

battle_length standard k (iota (cnf alpha)) l.

Proof.

intros H k H0; exists (L_ alpha (S k) - k); split.

- generalize (H'_L_ alpha k); lia.

- now apply battle_length_std.

Qed.

Since H ′
ω3(3) = H ′

ω3+3(0), the big number shown in Section 6.3.2.4 on
page 132 is less or equal than the number of steps of the battle with the initial
hydra of Figure 6.1, and 0 as initial replication factor.

•
•

• • •
• • •

Figure 6.1: The hydra corresponding to the ordinal ω3 + 3

../theories/html/hydras.Epsilon0.Hprime.html#H_
../theories/html/hydras.Epsilon0.L_alpha.html#H'_L_
../theories/html/hydras.Hydra.Hydra_Theorems.html

136 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

6.4 A variant of the Wainer hierarchy (functions
Fα)

Ketonen and Solovay introduce in [KS81] a “trivial” variant of the Wainer hi-
erarchy [WB87, Wai70] of fast growing functions, indexed by ordinals below ε0.
The functions Fα are defined by the following equations.

• F0(i) = i+ 1

• Fβ+1(i) = (Fβ)
(i+1)(i), where f (i) is the i-th iterate of f .

• Fα(i) = F{α}(i)(i) if α is a limit ordinal.

Remark 6.6 The difference with the “classic” Wainer hierarchy fα (α < ε0)
lies in the second equation: fβ+1(i) = (fβ)

(i)(i) and not fβ+1(i) = (fβ)
(i+1)(i).

A module about the classic Wainer hierarchy is in preparation.
Note also that [KS81] defines also Fε0 (by the third equation). Since ε0 is

not representable in type E0, our implementation in Coq does not take Fε0 into
account.

A first attempt is to write a definition of Fα by equations, in the same way as
for Hα (the functional iterate has already been used in Sect.2.3.3 on page 38).

Fixpoint iterate {A:Type}(f : A -> A) (n: nat)(x:A) :=

match n with

| 0 => x

| S p => f (iterate f p x)

end.

FromEpsilon0.F_alpha .

(* Works with Dev

Fail Equations F_ (alpha: E0) (i:nat) : nat by wf alpha E0lt :=

F_ alpha i with E0_eq_dec alpha E0zero :=

{ | left _zero => i ;

| right _nonzero

with Utils.dec (E0limit alpha) :=

{ | left _limit => F_ (Canon alpha i) i ;

| right _notlimit => iterate (F_ (E0_pred alpha)) (S i) i}}.

*)

We presume that this error comes from the recursive call of F_ inside an
application of iterate. The workaround we propose is to define first the iteration
of F_ as an helper F ∗, then to define the function F as a “iterating F ∗ once”.

Equations accepts the following definition, relying on lexicographic ordering
on pairs (α, n).

Definition call_lt (c c' : E0 * nat) :=

lexico E0lt (Peano.lt) c c'.

Lemma call_lt_wf : well_founded call_lt.

../theories/html/hydras.Epsilon0.F_alpha.html

6.4. A VARIANT OF THE WAINER HIERARCHY (FUNCTIONS Fα) 137

unfold call_lt; apply Inverse_Image.wf_inverse_image, wf_lexico.

- apply E0lt_wf.

- unfold Peano.lt; apply Nat.lt_wf_0.

Qed.

#[global] Instance WF : WellFounded call_lt := call_lt_wf.

(* F_star (alpha,i) is intended to be the i-th iterate of F_ alpha *)

Equations F_star (c: E0 * nat) (i:nat) : nat by wf c call_lt :=

F_star (alpha, 0) i := i;

F_star (alpha, 1) i

with E0_eq_dec alpha E0zero :=

{ | left _zero => S i ;

| right _nonzero

with Utils.dec (E0limit alpha) :=

{ | left _limit => F_star (Canon alpha i,1) i ;

| right _notlimit =>

F_star (E0_pred alpha, S i) i}};

F_star (alpha,(S (S n))) i :=

F_star (alpha, 1) (F_star (alpha, (S n)) i).

Definition F_ alpha i := F_star (alpha, 1) i.

It is quite easy to prove that our functional F_ satisfies the equations on
page 136.

Lemma F_zero_eqn : forall i, F_ E0zero i = S i.

Lemma F_lim_eqn : forall alpha i,

E0limit alpha ->

F_ alpha i = F_ (Canon alpha i) i.

Lemma F_succ_eqn : forall alpha i,

F_ (E0_succ alpha) i = iterate (F_ alpha) (S i) i.

As for the Hardy functions, we can use these equalities as rewrite rules for
“computing” some values of Fα(i), for small values of α.

Lemma LF1 : forall i, F_ 1 i = S (2 * i).

Lemma LF2 : forall i, exp2 i * i < F_ 2 i.

Like in Sect 6.3.3, we prove by induction the following properties (see [KS81]).

Theorem F_alpha_mono alpha : strict_mono (F_ alpha).

Theorem F_alpha_gt alpha : forall n, n < F_ alpha n.

Corollary F_alpha_positive alpha : forall n, 0 < F_ alpha n.

138 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Theorem F_alpha_dom alpha :

dominates_from 1 (F_ (E0_succ alpha)) (F_ alpha).

Theorem F_restricted_mono_l alpha :

forall beta n, Canon_plus n alpha beta ->

F_ beta n <= F_ alpha n.

As a corollary, we prove that, if β < α, then Fα dominates Fβ (p. 284
of [KS81]).

Section F_monotony_l.

Variables alpha beta : E0.

Hypothesis H'_beta_alpha : E0lt beta alpha.

Lemma F_mono_l: dominates (F_ alpha) (F_ beta).

End F_monotony_l.

Exercise 6.2 Prove the following property:

Lemma LF3 : dominates_from 2 (F_ 3) (fun n => iterate exp2 n n).

You may start this exercise with the file exercises/ordinals/F_3.v.

Exercise 6.3 Prove that, for any α ≥ 3 and n ≥ 2, Fα(1 + n) ≥ 2Fα(n).
You may start this exercise with the file exercises/ordinals/F_3.v.

Exercise 6.4 It is tempting to prove a simple property of monotony of the
function F_.

Let α ≤ β < ε0. For any n ≥ 2, Fα(n) ≤ Fβ(n).

Prove or disprove this statement.
You may start this exercise with the file exercises/ordinals/is_F_monotonous.v.

Exercise 6.5 Prove that for any n ≥ 2, Ack nn ≤ Fω(n), where Ack is the
Ackermann function. Next, prove that Fα is not primitive recursive, for any
α ≥ ω (please see Sect. 11.7 on page 222). On the other hand, please show that
for any natural number n, the function Fn is primitive recursive. Thus Fα is
primitive recursive if and only if α is finite.

You may start this exercise with the file exercises/ordinals/F_Omega.v.
Properties of the Ackermann function are studied in theories/ordinals/More-
Ack/Ack.v and theories/ordinals/MoreAck/AckNotPR.v .

G Library gaia_hydras.GF_alpha defines the functions Fα for Gaia’s world.

https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/F_3.v
https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/F_3.v
https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/is_F_monotonous.v
https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/F_omega.v
https://github.com/coq-community/hydra-battles/tree/master/theories/ordinals/MoreAck/Ack.v
https://github.com/coq-community/hydra-battles/tree/master/theories/ordinals/MoreAck/Ack.v
https://github.com/coq-community/hydra-battles/tree/master/theories/ordinals/MoreAck/AckNotPR.v
../theories/html/gaia_hydras.GF_alpha.html

6.5. MORE ABOUT RAPIDLY GROWING FUNCTIONS 139

6.5 More about rapidly growing functions
In Sect. 11.8 on page 228, we prove that the length of hydra-battles (for a given
hydra, according to the initial replication factor) is not primitive recursive in
general. This proof uses properties of the Ackermann function, and the H ′

α, Fα,
Lα families of functions.

140 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Chapter 7

Gaia and the hydra (draft)

7.1 Introduction
The Gaia project [GQS] by José Grimm aimed to formalize mathematics in Coq
in the style of Nicolas Bourbaki. The formalization of the first book in the El-
ements of Mathematics series by Bourbaki, on the theory of sets, was initially
described in a technical report in July 2009 [Gri09a]. The set-theoretic axioms
and basic definitions in Gaia were derived from an earlier development by Car-
los Simpson [Sim04b, Sim04a]. Grimm then wrote (and continually updated)
technical reports describing the formalization of Bourbaki’s two subsequent
books [Gri09b, Gri16] and additional topics in number theory [Gri13, Gri14],
before he passed away in 2019.

In 2020, members of Coq-community transferred the Gaia source code to
GitHub and adapted it for recent releases of the Mathematical Components
library, which Gaia heavily relies on. Anonymous volunteers (“collaborators
of Nicolas Bourbaki”) then finished the only in-progress proof left by Grimm.
At around 155,000 LOC, Gaia is currently one of the largest maintained open
source Coq projects.

Gaia contains definitions of ordinals in Cantor and Veblen normal form [Gri13],
adapted from the historical Cantor contribution [CC06]. The data types for or-
dinals are essentially defined the same way as in Hydras & Co., but they are not
identical inside Coq, e.g., due to residing in different modules. There are also
minor differences in how ordinal arithmetic is implemented, due to the different
evolutionary paths taken since divergence from the ancestor library.

The main objective of the theories/gaia/*.v files is to provide Gaia’s users
definitions and lemmas on some combinatorial aspects of ordinal numbers less
than ε0 [KS81], already proven in Hydras & Co.: canonical sequences, accessi-
bility properties, large sets and rapidly growing arithmetical functions. We may
also complete Hydras & Co. with some lemmas proven in Gaia.

For these purposes, we write modules dedicated to the importation of defi-
nitions and lemmas from each of both libraries into the other one. Please note
that by “import” we do not mean “duplicate” nor “repairing” Hydra-battles’
proofs. Whenever possible, we proceed by rewriting steps over the statements
and not the proofs. In a future version, it would be nice to have our proofs in
the same context, after porting Hydra-battles’ proofs under Gaia’s definition,

141

142 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

following proof re-use or repair techniques [BP01, Mag03, RPY+21].
This initial draft bridge code mostly uses the SSReflect proof language and

idioms from the Mathematical Components library. We made this design deci-
sion since we believe it is less challenging to reason about Hydra-battles code
using SSReflect and MathComp than to reason about Gaia without SSReflect1.

7.2 Library structure
The Gaia-hydras library is designed for users of Gaia and/or Hydra-battles.
Whenever possible, we managed to respect the notations and naming conven-
tions of both libraries.

The modules are named theories/gaia/*.v and coqdocumented in
theories/html/gaia_hydras.*.html The main entry point is gaia_hydras.T1Bridge,
which requires both Gaia’s ssete9 and a few modules of theories/ordinals/Epsilon0.
Other modules are dedicated to the adaptation of several notions developped
in Hydra-battles to MathComp’s and Gaia’s vocabulary and structures. By
default, we give priority to Gaia’s notation and vocabulary.

7.2.1 The T1Bridge Module
T1Bridge starts with a few requirements.

From mathcomp Require Import all_ssreflect zify.

From Coq Require Import Logic.Eqdep_dec.

From hydras Require Import DecPreOrder ON_Generic T1 E0.

From gaia Require Export ssete9.

Because of the common origin of Hydra-battles and Gaia, both libraries share
the common name T1 (data type of ordinal terms below ε0). As mentionned
before, the bare name T1 is given by priority to Gaia. Hydra-battles’ type T1

may be called hT1 (h for “hydras”) or simply T1.T1, Epsilon0.T1.T1, etc.

#[global] Notation hT1 := T1.T1.

#[global] Notation T1 := ssete9.CantorOrdinal.T1.

Likewise, many constants are common to Hydra-battles and Gaia. For in-
stance, the name zero may refer to Gaia’s gaia.ssete9.CantorOrdinal.zero and
Hydra-battles’ hydras.Epsilon0.T1.zero. By default, the former will be simply
called zero and the latter T1.zero.

The following notations are not defined in Gaia; we add them to T1Bridge

for simplicity’s sake.

(** Restrictions to terms in normal form *)

#[global] Notation LT := (restrict T1nf T1lt).

#[global] Notation LE := (restrict T1nf T1le).

1The author of these proof scripts is still a beginner in Ssreflect. Please forgive the clum-
siness of the current proof scripts.

../theories/html/gaia_hydras.T1Bridge.html

7.2. LIBRARY STRUCTURE 143

Remark 7.1 Please keep in mind that, in this module, we favour Gaia’s no-
tations over hydra’s. For instance, the mathematical inequality 42 < ω is ex-
pressed in Gaia’s terms as follows:

Check T1lt (\F 42) T1omega.

Check (\F 42 < T1omega)%ca.

Check \F 42 < T1omega. (* within cantor_scope *)

The same inequality, with Hydra-battles vocabulary:

Check T1.lt (T1.T1nat 42) T1.T1omega.

Check T1.lt (\F 42)%t1 T1.T1omega.

7.2.2 Translation functions and data refinement
The bridge between both libraries is made of two straightforward bijections.

Fixpoint h2g (a : hT1) : T1 :=

if a is T1.cons a n b then cons (h2g a) n (h2g b) else zero.

Fixpoint g2h (a : T1) : hT1 :=

if a is cons a n b then T1.cons (g2h a) n (g2h b) else T1.zero.

Example α : T1 :=

T1omega + phi0 T1omega * \F 3 + phi0 (\F 5) * \F 4 + T1omega * T1omega.

Example β : T1 := phi0 (phi0 (\F 2)).

Compute g2h α.

= T1.cons T1.T1omega 2

(T1.cons (FS 4) 3 (T1.phi0 (FS 1)))

: hT1

Compute α == h2g (g2h α).

= true

: bool

The following cancel lemmas will be often applied in order to simplify sub-
terms of the form (g2h (h2g t)) and (h2g (g2h t)), which appear in many proofs
by rewriting.

Lemma h2g_g2hK : cancel g2h h2g.

Proof. elim => // => a1 IH1 n t2 IH2 /=; by rewrite IH1 IH2. Qed.

Lemma g2h_h2gK : cancel h2g g2h.

(* ... *)

Lemma h2g_eqE (a b :hT1): h2g a = h2g b <-> a = b.

Lemma g2h_eqE (a b: T1): g2h a = g2h b <-> a = b.

144 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

7.2.2.1 Pretty printing Cantor normal forms

The following function provides us with a more readable printing of Cantor
normal forms (please see Sect. 4.1.5 on page 77).

Definition T1pp (a:T1) : ppT1 := pp (g2h a).

Compute β + α.

= cons (cons (cons zero 1 zero) 0 zero) 0

(cons (cons (cons zero 0 zero) 0 zero) 2

(cons (cons zero 4 zero) 3

(cons (cons zero 1 zero) 0 zero)))

: T1

Compute T1pp (β + α).

= (ω ^ ω ^ 2 + ω ^ ω * 3 + ω ^ 5 * 4 + ω ^ 2)%pT1

: ppT1

7.2.2.2 Refinements: Definitions

Functions h2g and g2h allow us to define a notion of “data-refinement” for con-
stants, functions, predicates and relations. The following definitions express
that a given constant, function, relation defined in Hydra-battles “implements”
the same concept of Gaia.

From gaia_hydras.T1Bridge.

Definition refines0 (x:hT1)(y:T1) := y = h2g x.

Definition refines1 (f:hT1 -> hT1) (f': T1 -> T1) :=

forall x: hT1, f' (h2g x) = h2g (f x).

Definition refines2 (f:hT1 -> hT1 -> hT1) (f': T1 -> T1 -> T1) :=

forall x y : hT1, f' (h2g x) (h2g y) = h2g (f x y).

Definition refinesPred (hP: hT1 -> Prop) (gP: T1 -> Prop) :=

forall x : hT1, hP x <-> gP (h2g x).

Definition refinesRel (hR: hT1 -> hT1 -> Prop)

(gR: T1 -> T1 -> Prop) :=

forall x y : hT1, hR x y <-> gR (h2g x) (h2g y).

Refinement lemmas can be easily “reversed”.

Lemma refines1_R f f' :

refines1 f f' <-> forall y: T1, f (g2h y) = g2h (f' y).

Lemma refines2_R f f' :

refines2 f f' <-> forall y z: T1, f (g2h y) (g2h z) = g2h (f' y z).

../theories/html/gaia_hydras/T1Bridge.html

7.2. LIBRARY STRUCTURE 145

7.2.3 Examples of refinement
Both of our libraries define constants like 0, 1, ω, and arithmetic functions:
successor, addition, multiplication, and exponential of base ω (function φ0).
We prove that these definitions are mutually consistent. Finally, we prove that
the boolean predicates “ to be in normal form” are equivalent.

7.2.3.1 A few constants

For each constant: 0, 1,…, n and ω, we prove that hydras’ definition refines
gaia’s.

Lemma zero_ref : refines0 T1.zero zero.

Proof. done. Qed.

Lemma one_ref : refines0 T1.one one.

Proof. done. Qed.

Lemma Finite_ref (n:nat) : refines0 (T1.T1nat n) (\F n).

Proof. by case: n. Qed.

Lemma omega_ref : refines0 T1.T1omega T1omega.

Proof. done. Qed.

7.2.3.2 Unary functions

Lemma succ_ref: refines1 T1.succ T1succ.

Lemma phi0_ref x: refines0 (T1.phi0 x) (phi0 (h2g x)).

7.2.3.3 Order and comparison

The strict orders on types T1 and hT1 are compatible. Note that Hydra-battles’
comparison on ordinal terms uses a Stdpp-like trichotomy, hence the first two
lemmas below:

Lemma compare_ref (x y: hT1) :

match T1.compare_T1 x y with

| Datatypes.Lt => T1lt (h2g x) (h2g y)

| Datatypes.Eq => h2g x = h2g y

| Datatypes.Gt => T1lt (h2g y) (h2g x)

end.

Lemma decide_hltE (a b : hT1):

bool_decide (T1.lt a b) = (h2g a < h2g b).

Lemma lt_ref : refinesRel T1.lt T1lt.

Lemma le_ref : refinesRel T1.le T1le.

7.2.3.4 More rewriting lemmas

Lemma T1lt_iff a b: T1nf a -> T1nf b ->

a < b <-> g2h a t1< g2h b.

146 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

Lemma T1le_iff (a b: T1):

a <= b <-> T1.le (g2h a) (g2h b).

Lemma hnf_g2h a : T1.nf (g2h a) = T1nf a.

Proof. by rewrite /T1.nf (nf_ref (g2h a)) h2g_g2hK. Qed.

Lemma g2h_succ a : g2h (T1succ a) = T1.succ (g2h a).

Proof. by rewrite -(h2g_g2hK a) succ_ref !g2h_h2gK. Qed.

Lemma hlt_iff a b: T1.lt a b <-> h2g a < h2g b.

Proof. by rewrite lt_ref. Qed.

Lemma T1limit_ref (a:Epsilon0.T1.T1) : T1.T1limit a = T1limit (h2g a).

Lemma T1is_succ_ref (a:Epsilon0.T1.T1): T1.T1is_succ a = T1is_succ (h2g a).

7.2.3.5 Addition and multiplication

The definition of the binary operations + and × requires the comparison of
ordinal terms, which is not implemented in Gaia-hydras the same way as in
Hydra-battles. Thus, the proof of the following lemmas applies applies compat-
ibility lemmas like compare_ref (see Section 7.2.3.3 on the preceding page).

Lemma plus_ref : refines2 T1.T1add T1add.

Lemma mult_ref : refines2 T1.T1mul T1mul.

7.2.3.6 Well formed ordinal terms (Cantor normal form)

Both definitions of “being in Cantor normal form” are compatible.

Lemma nf_ref (a: hT1) : T1.nf_b a = T1nf (h2g a).

7.2.4 Looking for a lemma
Coq’s command Search and notation scopes allow you to explore both libraries.
For instance, let us look for lemmas whose conclusion is α× β = β.

The following command lists us ‘gaia’s lemmas (thanks to Gaia’s cantor_scope).

Search (_ * ?beta = ?beta)%ca.

T1mul_a0E: forall c : T1, c * zero = zero

T1mul1n: forall x : T1, one * x = x

T1muln0: forall x : T1, x * zero = zero

mul_fin_omega:

forall n : nat, \F n.+1 * T1omega = T1omega

mul_int_limit:

forall (n : nat) [y : T1],

T1limit y -> \F n.+1 * y = y

exp_FO:

forall (z : T1) (n : nat) [v : T1_eqType],

v != zero -> exp_F z n * exp_O z v = exp_O z v

7.3. IMPORTING DEFINITIONS AND THEOREMS FROM HYDRA-BATTLES147

Within t1_scope:

Search (_ * ?beta = ?beta)%t1.

mult_a_0: forall a : hT1, (a * T1.zero)%t1 = T1.zero

mult_1_a: forall [a : hT1], nf a -> (\F 1 * a)%t1 = a

mult_fin_omega:

forall n : nat, (FS n * T1.T1omega)%t1 = T1.T1omega

L7:

forall (n : nat) [c : hT1] (p : nat),

c <> T1.zero ->

(FS n * T1.cons c p T1.zero)%t1 =

T1.cons c p T1.zero

Ex3: (\F 5 * T1.T1omega)%t1 = T1.T1omega

7.3 Importing Definitions and theorems from Hydra-
battles

Some constructions of Hydra-battles were (to our knowledge) not implemented
in Gaia yet, for instance, commutative (“Hessenberg”) addition, canonical se-
quences and Ketonen-Solovay machinery (Chapters 4, 5 and 6). In order not to
copy long proofs, we chose to derive several constructions from Hydra-battles
into Gaia’s world, and rewrite Hydra-battles statements in order to make them
Gaia-compatible.

7.3.0.1 Remark

We try to respect the following convention: Let us consider some module
hydras.Epsilon0.Foo. Its adaptation to Gaia will be a new module called
gaia_hydras.GFoo (“G” for Gaia).

Let bar be a symbol defined in Foo. Inside GFoo, the identifier bar is re-
served in priority to Gaia’s adaptation. Hydra-battles’ definition is still avail-
able through qualified names, like Epsilon0.Foo.bar, Foo.bar, or even a short
notation like hbar (“h” for Hydra-battles).

7.3.1 Hessenberg sum
Natural sum (a.k.a. Hessenberg sum) is defined in hydras.Epsilon0.Hessenberg
and is used for proving termination of all hydra battles (See Sect. 4.4.1).

Instead of defining this operation ex nihilo in theories/gaia, we chose to
import the definition from hydras.Epsilon0.Hessenberg as follows:

#[local] Notation hoplus := Epsilon0.Hessenberg.oplus.

Definition oplus alpha beta := h2g (hoplus (g2h alpha) (g2h beta)).

Infix "o+" := oplus: cantor_scope.

Fixpoint o_finite_mult n alpha :=

../theories/html/hydras.Epsilon0.Hessenberg.html
../theories/html/hydras.Epsilon0.Hessenberg.html

148 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

if n is p.+1 then alpha o+ (o_finite_mult p alpha)

else zero.

Compute T1pp (T1omega o+ T1omega).

= (ω * 2)%pT1

: ppT1

Compute T1pp (o_finite_mult 5 (T1omega + \F 1)).

= (ω * 5 + 5)%pT1

: ppT1

Exercise 7.1 We could also have defined oplus by a structurally recursive def-
inition, as in 4.4.1.1.1 on page 96.

Fixpoint oplus (alpha beta : T1) : T1 :=

let fix oplus_aux beta {struct beta} :=

match alpha, beta with

| zero, _ => beta

| _, zero => alpha

| cons a1 n1 b1, cons a2 n2 b2 =>

match compare a1 a2 with

| Gt => cons a1 n1 (oplus b1 beta)

| Lt => cons a2 n2 (oplus_aux b2)

| Eq => cons a1 (S (n1 + n2)%nat) (oplus b1 b2)

end

end

in oplus_aux beta.

Prove that Hessenberg.oplus refines the new function.

7.3.1.1 A few lemmas

Many properties of Hessenberg’s sum can be obtained from hydras.Epsilon0.Hes-
senberg just by sequences of rewritings.

Lemma oplusE (a b :T1) :

a o+ b =

match a, b with

| zero, _ => b

| _, zero => a

| cons a1 n1 b1, cons a2 n2 b2 =>

match compare a1 a2 with

| Gt => cons a1 n1 (b1 o+ b)

| Eq => cons a1 (S (n1 + n2)) (b1 o+ b2)

| Lt => cons a2 n2 (a o+ b2)

end

end.

Proof.

../theories/html/hydras.Epsilon0.Hessenberg.html
../theories/html/hydras.Epsilon0.Hessenberg.html

7.3. IMPORTING DEFINITIONS AND THEOREMS FROM HYDRA-BATTLES149

rewrite /oplus oplus_eqn; case: a.

cbn ; by rewrite h2g_g2hK.

case: b. move => ? ? ? ;by rewrite !h2g_g2hK.

move => t n t0 t1 n0 t2; rewrite !g2h_cons compare_g2h.

case (compare t1 t); by rewrite h2g_cons !h2g_g2hK.

Qed.

Lemma oplus0b: left_id zero oplus.

Proof. rewrite /oplus; case => // /= ? ? ?; by rewrite !h2g_g2hK. Qed.

Lemma oplusa0: right_id zero oplus.

Lemma oplus_nf (a b : T1) : T1nf a -> T1nf b -> T1nf (a o+ b).

Hessenberg sum is associative, commutative and strictly monotonous (on
ordinal terms in normal form).

Lemma oplusC (a b: T1): T1nf a -> T1nf b -> a o+ b = b o+ a.

Proof. move => ? ?; by rewrite /oplus oplus_comm ?hnf_g2h. Qed.

Lemma oplusA (a b c: T1) :

T1nf a -> T1nf b -> T1nf c -> a o+ (b o+ c) = a o+ b o+ c.

Proof.

move => ? ? ?; by rewrite /oplus !g2h_h2gK oplus_assoc ?hnf_g2h.

Qed.

Lemma oplus_lt1 (a b:T1):

T1nf a -> T1nf b -> zero < a -> b < b o+ a.

Lemma oplus_lt2 (a b: T1):

T1nf a -> T1nf b -> zero < b -> a < b o+ a.

Lemma oplus_strict_mono_l (a b c: T1):

T1nf a -> T1nf b -> T1nf c -> a < b -> a o+ c < b o+ c.

Lemma oplus_strict_mono_r (a b c: T1):

T1nf a -> T1nf b -> T1nf c -> b < c -> a o+ b < a o+ c.

Lemma oplus_lt_phi0 (a b c: T1):

T1nf a -> T1nf b -> T1nf c ->

a < c -> b < c -> phi0 a o+ phi0 b < phi0 c.

7.3.2 Canonical sequences
Canonical sequences are described in Chapter 5 on page 101, and implemented
in hydras.Epsilon0.Canon. Module gaia_hydras.GCanon, imports definitions and
results from that library.

Like for Hessenberg sum, we define a function canon via the translations g2h
and h2g.

#[global] Notation hcanon := Epsilon0.Canon.canon.

Definition canon (a: T1) (i:nat) : T1 := h2g (hcanon (g2h a) i).

../theories/html/hydras.Epsilon0.Canon.html
../theories/html/gaia_hydras.GCanon.html

150 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

Lemma g2h_canon a i: g2h (canon a i) = hcanon (g2h a) i.

Proof. by rewrite /canon g2h_h2gK. Qed.

The following lemmas are proved by rewriting from corresponding statements
proved in Hydra-battles. The first six lemmas correspond to rewriting rules
derived from the body of the definition of Epsilon0.Canon.canon.
Lemma gcanon_zero i: canon zero i = zero.

Proof. rewrite /canon => //. Qed.

Lemma canon_succ i a (Ha: T1nf a):

canon (T1succ a) i = a.

Lemma canon_SSn_zero (i : nat) (a : T1) (n : nat):

T1nf a ->

canon (cons a n.+1 zero) i = cons a n (canon (phi0 a) i).

Lemma canon_lim1 i (lambda: T1) :

T1nf lambda ->

T1limit lambda -> canon (phi0 lambda) i = phi0 (canon lambda i).

Lemma canon_lim2 i n (lambda : T1) (Hnf: T1nf lambda) (Hlim: T1limit lambda):

canon (cons lambda n.+1 zero) i = cons lambda n (phi0 (canon lambda i)).

Lemma canon_lim3 i n a lambda (Ha: T1nf a)

(Hlambda: T1nf lambda) (Hlim :T1limit lambda) :

canon (cons a n lambda) i = cons a n (canon lambda i).

7.3.2.1 Canonical sequences and the order T1lt

The following lemmas are also borrowed fromhydras.Epsilon0.Canon.
Lemma canon_lt (i : nat) [a : T1]: T1nf a -> a <> zero -> canon a i < a.

Lemma canon_limit_mono lambda i j (Hnf : T1nf lambda)

(Hlim : T1limit lambda) (Hij : (i < j)%N) :

canon lambda i < canon lambda j.

Lemma canon_limit_strong lambda :

T1nf lambda -> T1limit lambda ->

forall b, T1nf b ->

T1lt b lambda -> {i : nat | b < canon lambda i}.

Let us recall Gaia’s definition of ω-limit.
Definition limit_v2 (f: Tf) x :=

(forall n, f n < x) /\ (forall y, T1nf y -> y < x -> (exists n, y <= f n)).

Definition limit_of (f: Tf) x :=

[/\ (forall n m, (n < m)%N -> f n < f m), limit_v2 f x & T1nf x].

We can prove the following statements, in Gaia’s style.
Lemma gcanon_limit_v2 (lambda: T1):

T1nf lambda -> T1limit lambda -> limit_v2 (canon lambda) lambda.

Lemma canon_limit_of lambda (Hnf : T1nf lambda) (Hlim : T1limit lambda) :

limit_of (canon lambda) lambda.

../theories/html/hydras.Epsilon0.Canon.html

7.3. IMPORTING DEFINITIONS AND THEOREMS FROM HYDRA-BATTLES151

7.3.3 Accessibility in ε0

The library gaia_hydras.GPaths imports definitions and lemmas from hydras.Epsilon0.Paths

(described in Sect. 5.3).

7.3.3.1 Transitions and paths

Let us consider a kind of transition system, the states of which are ordinals
below ε0. The elementary transitions (“small steps”) are jumps from an ordinal
α to {α}(i), for some i 6= 0.

#[global] Notation htransition := Epsilon0.Paths.transition.

#[global] Notation hbounded_transitionS := Paths.bounded_transitionS.

Definition transition i (a b: T1) :=

[/\ i != 0 , a!= zero & b == canon a i].

Definition bounded_transitionS n (a b: T1) :=

exists i, (i <= n)%N /\ transition (S i) a b.

Paths (sequences of transitions) are defined by delegation to hydras.Epsilon0.Paths.

(** [path_to b s alpha] : [b] is accessible from [alpha] with trace [s] *)

Definition path_to (to: T1)(s: seq nat) (from:T1) : Prop :=

hpath_to (g2h to) s (g2h from).

Notation path from s to := (path_to to s from).

Definition acc_from a b := exists s, path a s b.

Paths with constant index and paths whose index is incremented by 1 at each
step play an important role in the so-called Ketonen-Solovay machinery [KS81].

Definition const_path i a b := hconst_path i (g2h a) (g2h b).

Definition standard_path i a j b :=

Paths.standard_path i (g2h a) j (g2h b).

The following examples are proved using the Epsilon0.Paths.path_tac tactic.

Example ex_path1 : path (T1omega * (\F 2)) [:: 2; 2; 2] T1omega.

Proof. rewrite /path_to; Epsilon0.Paths.path_tac. Qed.

Example ex_path2: path (T1omega * \F 2) [:: 3; 4; 5; 6] T1omega.

Proof. rewrite /path_to; path_tac. Qed.

Example ex_path3: path (T1omega * \F 2) (index_iota 3 15) zero.

Proof. rewrite /path_to /index_iota => /=; path_tac. Qed.

Example ex_path4: path (T1omega * \F 2) (List.repeat 3 8) zero.

Proof. rewrite /path_to => /=; path_tac. Qed.

../theories/html/gaia_hydras.GPaths.html
../theories/html/hydras.Epsilon0.Paths.html
../theories/html/hydras.Epsilon0.Paths.html

152 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

7.3.3.2 Main theorems about paths

β is (strictly) accessible from α, if and only iff β < α.

Lemma path_to_LT b s a:

path_to b s a -> T1nf a -> T1nf b -> b < a.

Lemma LT_path_to (a b : T1) :

T1nf a -> T1nf b -> b < a -> {s : list nat | path_to b s a}.

Constant index paths can be simulated with constant paths with larger in-
dex.

Lemma Cor12 (a: T1) : T1nf a ->

forall b i n, T1nf b -> b < a -> (i < n)%N ->

const_path i.+1 a b -> const_path n.+1 a b.

If β < α, then β is accessible from α through some constant-index path.

Lemma Lemma2_6_1 (a:T1) :

T1nf a -> forall b, T1nf b -> b < a -> {n:nat | const_path n.+1 a b}.

Any constant-index path can be simulated by a “standard” path (with index
incremented by 1 at each step).

Lemma constant_to_standard_path (a b : T1) (i : nat):

T1nf a -> const_path i.+1 a b -> zero < a ->

{j:nat | standard_path i.+1 a j b}.

As a corollary, we relate ordinal inequality to standard paths.

Theorem LT_to_standard_path (a b : T1) :

T1nf a -> T1nf b -> b < a ->

{n : nat & {j:nat | standard_path n.+1 a j b}}.

Proof.

7.3.4 A type for well-formed ordinal terms
For compatibility’s sake, we add a clone of hydra-battles’ type E0 defined in
Epsilon0.E0. This type is mainly used in the definition with Equations of rapidly
growing functions indexed by ordinals (see Sect. 7.4 on page 155).

Record E0 := mkE0 { cnf : T1 ; _ : T1nf cnf == true}.

Coercion cnf: E0 >-> T1.

Definition E0_eq_mixin : Equality.mixin_of E0.

Definition E0_eqtype := Equality.Pack E0_eq_mixin.

Canonical Structure E0_eqtype.

../theories/html/hydras.Epsilon0.E0.html

7.3. IMPORTING DEFINITIONS AND THEOREMS FROM HYDRA-BATTLES153

7.3.4.1 Definitions

Many functions on type T1 are “lifted” to E0.

Definition ppE0 (a: E0) := T1pp (cnf a).

Definition E0lt (a b: E0) := cnf a < cnf b.

Definition E0le (a b: E0) := cnf a <= cnf b.

#[global, program] Definition E0zero: E0 := @mkE0 zero _.

#[global, program]

Definition E0_succ (a: E0): E0 := @mkE0 (T1succ (cnf a)) _.

Next Obligation.

rewrite nf_succ => //; case: a => ? i //=; by apply /eqP.

Defined.

#[global, program]

Definition E0_pred (a:E0) : E0:= @mkE0 (T1pred (cnf a)) _.

Next Obligation.

case: a => ? ?; rewrite nf_pred => //= ; by apply /eqP.

Defined.

Fixpoint E0fin (n:nat) : E0 :=

if n is p.+1 then E0_succ (E0fin p) else E0zero.

#[program] Definition E0_omega: E0 := @mkE0 T1omega _.

#[program] Definition E0_phi0 (a: E0) : E0 := @mkE0 (phi0 (cnf a)) _.

#[program] Definition E0plus (a beta: E0) : E0 :=

@mkE0 (T1add (cnf a) (cnf beta)) _.

Next Obligation.

rewrite nf_add => //.

case :a; cbn => t Ht; apply /eqP => //.

case :beta; cbn => t Ht; apply /eqP => //.

Defined.

#[program] Definition E0mul (a beta: E0) : E0 :=

@mkE0 (T1mul (cnf a) (cnf beta)) _.

(* ... *)

Canonical sequences are lifted to type E0 in gaia_hydras.GCanon.

#[program] Definition E0Canon (a: E0) (i: nat): E0 :=

@mkE0 (canon (cnf a) i) _.

Lemma E0_canon_lt (a: E0) i:

cnf a <> zero -> E0lt (E0Canon a i) a.

(* ... *)

../theories/html/gaia_hydras.GCanon.html

154 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

In order to import definitions and lemmas from Epsilon0.E0, we define a
pair of translations.

#[program] Definition E0_h2g (a: hE0): E0:= @mkE0 (h2g (E0.cnf a)) _.

Next Obligation.

rewrite -nf_ref; case: a => /= cnf cnf_ok; by rewrite cnf_ok.

Defined.

#[program] Definition E0_g2h (a: E0): hE0 := @E0.mkord (g2h (cnf a)) _.

Next Obligation.

case: a => /= cnf0 /eqP; by rewrite hnf_g2h.

Defined.

7.3.4.2 Main lemmas about E0

These tools allow us, for instance, to import E0.lt’s well-foundedness.

Lemma gE0lt_wf : well_founded E0lt.

Proof.

move => ?; apply Acc_incl with (fun x y => hE0lt (E0_g2h x) (E0_g2h y)).

(* ... *)

7.3.4.3 E0 as an ordinal notation

The notion of ordinal notation is defined in Chapter 3. In gaia_hydras.T1Bridge,
we define an instance of class ON E0lt compare.

First, we define an instance of (Compare T1):

#[global] Instance T1compare : Compare T1:=

fun a beta => compare (g2h a) (g2h beta).

Compute compare (\F 6 + T1omega) T1omega.

= Eq

: comparison

Lemma T1compare_correct (a b: T1):

CompSpec eq T1lt a b (compare a b).

Then, we build an instance of (ON E0lt compare).

#[global] Instance E0compare: Compare E0 :=

fun (alpha beta: E0) => T1compare (cnf alpha) (cnf beta).

Lemma E0compare_correct (alpha beta : E0) :

CompSpec eq E0lt alpha beta (compare alpha beta).

(* ... *)

#[global] Instance E0_sto : StrictOrder E0lt.

#[global] Instance E0_comp : Comparable E0lt compare.

Proof. split; [apply E0_sto | apply E0compare_correct]. Qed.

../theories/html/hydras.Epsilon0.E0.html
../theories/html/gaia_hydras.T1Bridge.html

7.4. RAPIDLY GROWING ARITHMETIC FUNCTIONS 155

Compute compare (E0_phi0 (E0fin 2)) (E0mul (E0_succ E0_omega) E0_omega).

= Eq

: comparison

#[global] Instance Epsilon0 : ON E0lt compare.

Proof. split; [apply: E0_comp | apply: gE0lt_wf]. Qed.

7.4 Rapidly growing arithmetic functions
In this section, we consider a few families of arithmetic functions, indexed by or-
dinal numbers below ε0. The type of such families is E0 -> nat -> nat where E0

is the type of ordinal terms in Cantor normal form, strictly below ε0. In order
to compare such functions, we define a few abstract properties in gaia_hy-
dras.T1Bridge (adapted from hydras.Prelude.Iterates).

Definition strict_mono (f: nat -> nat) :=

forall n p, (n< p)%N -> (f n < f p)%N.

Definition dominates_from (n : nat) (g f : nat -> nat) :=

forall p : nat, (n <= p)%N -> (f p < g p)%N.

Definition dominates g f := exists n : nat, dominates_from n g f .

Definition dominates_strong g f := {n : nat | dominates_from n g f}.

Definition fun_le f g := forall n:nat, (f n <= g n)%N.

In Hydra-battles, these functions are defined by transfinite induction, using
the coq-equations plug-in [SM19]. For that purpose, we defined a sigma-type
hydras.Epsilon0.E0.E0 of ordinal-terms in Cantor normal form.

7.4.1 The H ′
α family

This variant of the Hardy hierarchy is described in Sect. 6.3 on page 129, and
adapted to Gaia in Module gaia_hydras.GHprime.

From mathcomp Require Import all_ssreflect zify.

From gaia Require Export ssete9.

From Coq Require Import Logic.Eqdep_dec.

From hydras Require Import DecPreOrder T1 E0.

From hydras Require Paths.

From hydras Require Import Iterates Hprime L_alpha.

From gaia_hydras Require Import T1Bridge GCanon GPaths.

Definition H'_ alpha i := Hprime.H'_ (E0_g2h alpha) i.

In the rest of this section, we prove a few lemmas by rewriting from Hydra-
battles version (Epsilon0.Hprime).

../theories/html/gaia_hydras.T1Bridge.html
../theories/html/gaia_hydras.T1Bridge.html
../theories/html/hydras.Prelude.Iterates.html
../theories/html/gaia_hydras.GHprime.html
../theories/html/hydras.Epsilon0.Hprime.html

156 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

7.4.1.1 Equations for H ′

In Hydra-battles’, H ′
α(i) is defined by transfinite induction over α, using coq-

equations. In the present module, equations forH ′ are just imported as lemmas.

Lemma H'_eq1 (i: nat) : H'_ E0zero i = i.

Proof. by rewrite /H'_ g2h_E0zero Epsilon0.Hprime.H'_eq1. Qed.

Lemma H'_eq2 alpha i :

H'_ (E0_succ alpha) i = H'_ alpha (S i).

Proof.

case alpha => ? ?; by rewrite /H'_ g2h_E0_succ H'_eq2.

Qed.

Lemma H'_eq3 alpha i :

E0limit alpha -> H'_ alpha i = H'_ (E0Canon alpha (S i)) i.

(* ... *)

7.4.1.2 Examples

Lemma H'_omega k : H'_ E0_omega k = (2 * k).+1 %nat.

Proof.

rewrite H'_eq3 ?/E0limit => //.

(* ... *)

Lemma H'_omega_double (k: nat) :

H'_ (E0mul E0_omega (E0fin 2)) k = (4 * k + 3)%coq_nat.

Proof.

by rewrite /H'_ -H'_omega_double E0g2h_mulE E0g2h_omegaE E0g2h_Fin.

Qed.

7.4.1.3 Order and monotony properties

Lemma H'_dom alpha beta :

E0lt alpha beta -> dominates_strong (H'_ beta) (H'_ alpha).

Lemma H'_alpha_mono (alpha : E0) : strict_mono (H'_ alpha).

Proof.

generalize (Hprime.H'_alpha_mono (E0_g2h alpha)) => H x y /ltP.

move /H; by rewrite /H'_ => /ltP.

Qed.

Theorem H'_alpha_gt alpha (Halpha: alpha <> E0zero) n :

(n < H'_ alpha n)%N.

Proof.

move: (H'_alpha_gt (E0_g2h alpha)) => H.

rewrite /H'_ ; apply /ltP; apply H => H0; apply Halpha.

apply gE0_eq_intro; case: alpha H H0 Halpha => // ? ? ? H0 ?.

injection H0 => Heq; by rewrite -g2h_eqE ?Heq.

Qed.

Lemma H'_omega_cube_min :

7.4. RAPIDLY GROWING ARITHMETIC FUNCTIONS 157

forall k : nat,

0 <> k -> (hyper_exp2 k.+1 <= H'_ (E0_phi0 (E0fin 3)) k)%N.

Proof.

move => k Hk; apply /leP; transitivity (Hprime.H'_ (hE0phi0 3) k).

- by apply H'_omega_cube_min.

- by rewrite /H'_ E0g2h_phi0 E0g2h_Fin.

Qed.

7.4.2 The Fα hierarchy (Library GF_alpha)
The functions Fα are described in Section 6.4 on page 136.
From gaia_hydras.GF_alpha.

Definition F_ (alpha : E0) := F_alpha.F_ (E0_g2h alpha).

The following equalities correspond to the equations of Epsilon0.F_alpha

Lemma F_zeroE i: F_ E0zero i = i.+1.

Lemma F_alpha_0_eq (alpha : E0): F_ alpha 0 = 1.

Lemma F_succE alpha i :

F_ (E0_succ alpha) i = Iterates.iterate (F_ alpha) i.+1 i.

Lemma F_limE alpha i:

T1limit (cnf alpha) -> F_ alpha i = F_ (E0Canon alpha i) i.

By rewriting, we import a few lemmas from Epsilon0.F_alpha.

Lemma F_alpha_gt (alpha : E0) (n : nat): (n < F_ alpha n)%N.

Proof. apply /ltP; apply Epsilon0.F_alpha.F_alpha_gt. Qed.

Lemma F_alpha_mono (alpha: E0): strict_mono (F_ alpha).

Proof.

rewrite /strict_mono /F_ => n p Hnp; apply /ltP.

apply F_alpha_mono; move: Hnp => /ltP //.

Qed.

Lemma F_alpha_dom alpha:

dominates_from 1 (F_ (E0_succ alpha)) (F_ alpha).

Proof.

rewrite /dominates_from /F_ g2h_E0_succ => p Hp.

apply /ltP; apply F_alpha_dom; by apply /leP.

Qed.

The Fα and H ′
α hierarchies satisfy the inequality Fα(n) ≤ H ′

ωα(n) for any
α and n > 0.

Lemma H'_F alpha n : (F_ alpha n.+1 <= H'_ (E0_phi0 alpha) n.+1)%N.

With the same technique, we prove that if α ≥ ω, then Fα is not primitive
recursive.

Lemma F_alpha_not_PR_E0 alpha:

E0le E0_omega alpha -> isPR 1 (F_ alpha) -> False.

../theories/html/gaia_hydras.GF_alpha.html
../theories/html/hydras.Epsilon0.F_alpha.html
../theories/html/hydras.Epsilon0.F_alpha.html

158 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

7.4.3 The Lα hierarchy (Library GL_alpha)

The functions Lα, described in Sect. 6.2 on page 121 allow us to “compute” the
length of standard hydra battles. In the same way as for the hierarchies Fα and
H ′

α, we import definitions and lemmas from the module Epsilon0.L_alpha.

Fromgaia_hydras.GF_alpha.

Definition L_ (alpha:E0) (i:nat): nat :=

L_alpha.L_ (E0_g2h alpha) i.

Lemma L_zeroE i : L_ E0zero i = i.

Proof. by rewrite /L_. Qed.

Lemma L_eq2 alpha i :

E0is_succ alpha -> L_ alpha i = L_ (E0_pred alpha) (S i).

Lemma L_succE alpha i : L_ (E0_succ alpha) i = L_ alpha i.+1.

Lemma L_limE alpha i :

E0limit alpha -> L_ alpha i = L_ (E0Canon alpha i) (S i).

The following theorem compares the Lα and H ′
α hierarchies.

Theorem H'_L_ a i: (H'_ a i <= L_ a i.+1)%N.

Proof. rewrite /L_ /H'_; apply /leP; by apply L_alpha.H'_L_. Qed.

7.4.4 Back to hydras

In gaia_hydras.GHydra, we import a few theorem about hydra battles (see Hy-
dra.Hydra_Theorems).

7.4.4.1 Termination of all battles

The termination measure is re-defined with Gaia’s ordinals.

Fixpoint m (h:Hydra) : T1 :=

if h is node (hcons _ _ as hs) then ms hs else zero

with ms (s : Hydrae) : T1 :=

if s is hcons h s' then phi0 (m h) o+ ms s' else zero.

Compute T1pp (m Examples.Hy).

= (ω ^ (ω ^ ω ^ 2 + 1) + 2)%pT1

: ppT1

Lemma mVariant: Hvariant nf_Wf free m .

Theorem every_battle_terminates : Termination.

../theories/html/hydras.Epsilon0.L_alpha.html
../theories/html/gaia_hydras.GF_alpha.html
../theories/html/gaia_hydras.GHydra.html
../theories/html/theories/html/hydras.Hydra.Hydra_Theorems.html
../theories/html/theories/html/hydras.Hydra.Hydra_Theorems.html

7.5. IMPORTING A THEOREM FROM GAIA 159

7.4.5 Impossibility Theorems
The theorems described in Sect. 5.4 on page 108 and 5.5.3 on page 117 are
adapted to Gaia’s world.

Lemma Impossibility_free mu m (Var: Hvariant nf_Wf free m):

~ BoundedVariant Var mu.

Proof.

move => bvar; refine (Impossibility_free _ _ _ (bVar bvar)).

Qed.

Lemma Impossibility_std mu m (Var: Hvariant nf_Wf standard m):

~ BoundedVariant Var mu.

Proof.

move => bvar; refine (Impossibility_std _ _ _ (bVar bvar)).

Qed.

7.4.5.1 Length of standard battles

Finally, we relate the length of standard-battles with the Lα fast growing func-
tions.

Definition l_std alpha k := (L_ alpha (S k) - k)%nat.

Definition T1toH (a: T1) : Hydra := O2H.iota (g2h a).

Lemma l_std_ok : forall alpha : E0,

alpha != E0zero ->

forall k : nat,

(1 <= k)%N -> battle_length standard k (T1toH (cnf alpha))

(l_std alpha k).

.

7.5 Importing a theorem from Gaia
The Gaia library already contains many lemmas about ordinal arithmetic. In
this section, we give two examples of porting such a lemma to Hydra-battles’
vocabulary.

7.5.1 Associativity of ordinal multiplication (below ε0)
Gaia already contains a proof that the multiplication of ordinals less than ε0 is
associative. From gaia.ssete9.v

Lemma mulA: associative T1mul.

This lemma was missing from hydra-battles. Nevertheless, we could adapt
this lemma to hydra-battles’ ordinals, by a small sequence of rewritings.

Lemma g2h_multE (a b : T1) : g2h (a * b) = T1.T1mul (g2h a) (g2h b).

Proof. apply symmetry, refines2_R, mult_ref. Qed.

https://github.com/coq-community/gaia/blob/master/theories/ssete9.v

160 CHAPTER 7. GAIA AND THE HYDRA (DRAFT)

The module gaia_hydras.GaiaToHydra shows a small example of importation
of multA into hydra-battles’ world.

From mathcomp Require Import all_ssreflect zify.

From gaia_hydras Require Import T1Bridge .

From hydras Require Import T1.

From gaia Require Import ssete9.

Import Epsilon0.T1.

In the rest of this module, names like T1, omega, etc. are bound to Hydra-
battles’ meaning.

Locate T1.

Inductive hydras.Epsilon0.T1.T1

Inductive gaia.ssete9.CantorOrdinal.T1

(shorter name to refer to it in current context is CantorOrdinal.T1)

Notation gaia_hydras.T1Bridge.T1

(shorter name to refer to it in current context is T1Bridge.T1)

Module hydras.Epsilon0.T1

Lemma hmultA : associative T1mul.

Proof.

move => a b c.

by rewrite -(g2h_h2gK a) -(g2h_h2gK b) -(g2h_h2gK c)

-!g2h_multE mulA.

Qed.

Example Ex1 (a: T1): T1omega * (a * T1omega) = T1omega * a * T1omega.

Proof. by rewrite hmultA. Qed.

7.5.2 Right Distributivity, etc.
Likewise, we prove almost for free that ordinal multiplication is right distributive
over addition (with Hydra-battles’ definitions).

Lemma hmult_dist : right_distributive T1mul T1add.

Proof.

move => a b c; move :(mul_distr (h2g a) (h2g b) (h2g c)) => H.

rewrite -(g2h_h2gK a) -(g2h_h2gK b) -(g2h_h2gK c).

by rewrite -!g2h_plusE -!g2h_multE H -g2h_plusE.

Qed.

We plan to automatize as soon as possible the proof of this kind of transfer
lemmas from Gaia to Hydra-battles.

../theories/html/gaia_hydras.GaiaToHydra.html

Chapter 8

Kurt Schütte’s axiomatic
definition of countable
ordinals

In the present chapter, we compare our implementation of the segment [0, ε0)
with a mathematical text in order to “validate” our constructions. Our reference
here is the axiomatic definition of the set of countable ordinals, in chapter V of
Kurt Schütte’s book “ Proof Theory ” [Sch77].

Remark 8.1 In all this chapter, the word “ordinal” will be considered as a
synonymous of “countable ordinal”

Schütte’s definition of countable ordinals relies on the following three axioms:
There exists a strictly ordered set , such that
1. (O, <) is well-ordered

2. Every bounded subset of O is countable

3. Every countable subset of O is bounded.
Starting with these three axioms, Schütte re-defines the vocabulary about

ordinal numbers: the null ordinal 0, limits and successors, the addition of ordi-
nals, the infinite ordinals ω, ε0, Γ0, etc.

This chapter describes an adaptation to Coq of Schütte’s axiomatization.
Unlike the rest of our libraries, our library hydras.Schutte is not constructive,
and relies on several axioms.

• First, please keep in mind that the set of countable ordinals is not count-
able. Thus, we cannot hope to represent all countable ordinals as finite
terms of an inductive type, which was possible with the set of ordinals
strictly less than ε0 (resp. Γ0)

• We tried to be as close as possible to K. Schütte’s text, which uses “clas-
sical” mathematics : excluded middle, Hilbert’s ε (choice) and Russel’s
ι (definite description) operators. Both operators allow us to write def-
initions close to the natural mathematical language, such as “succ is the
least ordinal strictly greater than α”

161

../theories/html/hydras.Schutte.Schutte.html

162 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

• Please note that only the library Schutte/*.v is “contaminated” by axioms,
and that the rest of our libraries remain constructive.

8.1 Declarations and axioms
Let us declare a type Ord for representing countable ordinals, and a binary
relation lt. Note that, in our development, Ord is a type, while the set of
countable ordinals (called O by Schütte) is the full set over the type Ord.

A set A is countable if there is an injective function from A to N (see Library
Schutte.Countable).

This library was initially written by Florian Hatat, as he was a student of
École Normale Supérieure de Lyon. Stéphane Desarzens adapted it in order to
make it compatible with the Topology/ZornsLemma project [Sch].

From ModuleSchutte.Schutte_basics

Parameter Ord : Type.

Parameter lt : relation Ord.

Infix "<" := lt : schutte_scope.

Notation ordinal := (@Full_set Ord).

Definition big0 alpha : Ensemble Ord := fun beta => beta < alpha.

Schütte’s first axiom tells that lt is a well order on the set ordinal (The
class WO is defined in Module Schutte.Well_Orders.v).

Variables (M:Type)

(Lt : relation M).

Definition Le (a b:M) := a = b \/ Lt a b.

Definition least_member (X:Ensemble M) (a:M) :=

In X a /\ forall x, In X x -> Le a x.

Class WO : Type:=

{

Lt_trans : Transitive Lt;

Lt_irreflexive : forall a:M, ~ Lt a a;

well_order : forall (X:Ensemble M)(a:M),

In X a ->

exists a0:M, least_member X a0

}.

Axiom AX1 : WO lt.

The second and third axioms say that a subset X of O is (strictly) bounded
if and only if it is countable.

Axiom AX2 :

forall X: Ensemble Ord,

(exists a, (forall y, In X y -> y < a)) ->

../theories/html/hydras.Schutte.Schutte.html
../theories/html/hydras.Schutte.Countable.html
../theories/html/hydras.Schutte.Schutte_basics.html
../theories/html/hydras.Schutte.Well_Orders.html

8.2. ADDITIONAL AXIOMS 163

Countable X.

Axiom AX3 :

forall X : Ensemble Ord,

Countable X ->

exists a, forall y, In X y -> y < a.

AX2 and AX3 could have been replaced by a single axiom (using the iff con-
nector), but we decided to respect as most as possible the structure of Schütte’s
definitions.

8.2 Additional axioms
The adaptation of Schütte’s mathematical discourse to Coq led us to import
a few axioms from the standard library. We encourage the reader to con-
sult Coq’s FAQ about the safe use of axioms https://github.com/coq/coq/wiki/
The-Logic-of-Coq#axioms.

8.2.0.1 Classical logic

In order to work with classical logic, we import the module Coq.Logic.Classical
of Coq’s standard library, specifically the following axiom:

Axiom classic : forall P:Prop, P \/ ~P.

8.2.0.2 Description operators

In order to respect Schütte’s style, we imported also the library Coq.Logic.Epsilon.
The rest of this section presents a few examples of how Hilbert’s choice operator
and Church’s definite description allow us to write understandable definitions
(close to the mathematical natural language).

8.2.0.3 The definition of zero

According to the definition of a well order, every non-empty subset of Ord has a
least element. Furthermore, this least element is unique. We would like to call
this element zero.

Remark R : exists! z : Ord, least_member lt ordinal z.

Proof.

destruct inh_Ord as [a];

apply least_member_ex_unique with a.

- apply AX1.

- split.

Qed.

Definition zero : Ord.

Proof.

Fail destruct R.

https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Classical.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Epsilon.html

164 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

The command has indeed failed with message:

Case analysis on sort Type is not allowed for

inductive definition ex.

Ord

Abort.

Indeed, the basic logic of Coq does not allow us to eliminate a proof of a
proposition ∃!x : A, P (x) for building a term whose type lies in the sort Type.
The reasons for this impossibility are explained in many documents [BC04a,
Chl11, Coq].

Let us import the library Coq.Logic.Epsilon, which contains the following
axiom and lemmas.

Print epsilon_statement.

*** [epsilon_statement :

forall (A : Type) (P : A -> Prop),

inhabited A -> {x : A | (exists x0 : A, P x0) -> P x}]

Arguments epsilon_statement [A]%type_scope

P%function_scope _

Hilbert’s ε operator is derived from this axiom.

Print epsilon.

epsilon =

fun (A : Type) (i : inhabited A) (P : A -> Prop) =>

proj1_sig (epsilon_statement P i)

: forall A : Type,

inhabited A -> (A -> Prop) -> A

Arguments epsilon [A]%type_scope i P%function_scope

Check constructive_indefinite_description.

constructive_indefinite_description

: forall (A : Type) (P : A -> Prop),

(exists x : A, P x) -> {x : A | P x}

If we consider the unique existential quantifier ∃!, we obtain Church’s definite
description operator.

Check iota_statement.

iota_statement

: forall (A : Type) (P : A -> Prop),

inhabited A ->

{x : A | (exists ! x0 : A, P x0) -> P x}

Print iota.

8.2. ADDITIONAL AXIOMS 165

iota =

fun (A : Type) (i : inhabited A) (P : A -> Prop) =>

proj1_sig (iota_statement P i)

: forall A : Type,

inhabited A -> (A -> Prop) -> A

Arguments iota [A]%type_scope i P%function_scope

Print iota_spec.

iota_spec =

fun (A : Type) (i : inhabited A) (P : A -> Prop) =>

proj2_sig (iota_statement P i)

: forall (A : Type) (i : inhabited A)

(P : A -> Prop),

(exists ! x : A, P x) -> P (iota i P)

Arguments iota_spec [A]%type_scope i P%function_scope

_

Indeed, the operators epsilon and iota allowed us to make our defini-
tions quite close to Schütte’s text. Our libraries Schutte.MoreEpsilonIota and
Schutte.PartialFun are extensions of Coq.logic.Epsilon for making easier such
definitions. See also an article in french [Cas07].

Class InH (A: Type) : Prop :=

InHWit : inhabited A.

Definition some {A:Type} {H : InH A} (P: A -> Prop)

:= epsilon (@InHWit A H) P.

Definition the {A:Type} {H : InH A} (P: A -> Prop)

:= iota (@InHWit A H) P.

In order to use these tools, we have to tell Coq that the declared type Ord is
not empty:

Axiom inh_Ord : inhabited Ord.

#[global] Instance InH_Ord : InH Ord.

Proof.

exact inh_Ord.

Qed.

We are now able to define zero as the least ordinal. For this purpose, we
define a function returning the least element of any [non-empty] subset.

From ModuleSchutte.Well_Orders

Variables (M:Type)

(Lt : relation M).

Definition Le (a b:M) := a = b \/ Lt a b.

../theories/html/hydras.Schutte.MoreEpsilonIota.html
../theories/html/hydras.Schutte.PartialFun.html
../theories/html/hydras.Schutte.Well_Orders.html

166 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Definition least_member (X:Ensemble M) (a:M) :=

In X a /\ forall x, In X x -> Le a x.

Definition the_least {M: Type} {Lt}

{inh : InH M} {WO: WO Lt} (X: Ensemble M) : M :=

the (least_member Lt X).

From Module Schutte.Schutte_basics

Definition zero := the_least ordinal.

We want to prove now that zero is less than or equal to any ordinal number.

Lemma zero_le (alpha : Ord) : zero <= alpha.

Proof.

unfold zero, the_least, the; apply iota_ind.

alpha: Ord

exists ! x : Ord, least_member lt ordinal x

alpha: Ord

forall a : Ord,

unique (least_member lt ordinal) a -> a <= alpha

- apply the_least_unicity, Inh_ord.

- destruct 1 as [[_ H1] _]; apply H1; split.

Qed.

8.2.0.4 Remarks on epsilon and iota

What would happen in case of a misuse of epsilon or iota ? For instance, one
could give a unsatisfiable specification to epsilon or a specification for iota that
admits several realizations.

Let us consider an example:

Module Bad.

Definition bottom := the_least Empty_set.

Since we won’t be able to prove the proposition
(exists! a: Ord, least_member (Empty_set Ord) a), the only properties we would
be able to prove about bottom would be trivial properties, i.e., satisfied by any
element of type Ord, like for instance bottom = bottom, or zero <= bottom.

Lemma le_zero_bottom : zero <= bottom.

Proof. apply zero_le. Qed.

Lemma bottom_eq : bottom = bottom.

Proof. trivial. Qed.

On the other hand, the following attempt fails, because of the unprovable
first subgoal (please notice that the second subgoal is easy to solve !).

../theories/html/hydras.Schutte.Schutte_basics.html

8.3. THE SUCCESSOR FUNCTION 167

Lemma le_bottom_zero : bottom <= zero.

Proof.

unfold bottom, the_least, the; apply iota_ind.

exists ! x : Ord, least_member lt Empty_set x

forall a : Ord,

unique (least_member lt Empty_set) a -> a <= zero

Abort.

End Bad.

In short, using epsilon and iota in our implementation of countable ordinals
after Schütte has two main advantages.

• It allows us to give a name (using Definition) to witnesses of existential
quantifiers (let us recall that, in classical logic, one may consider non-
constructive proofs of existential statements)

• By separating definitions from proofs of [unique] existence, one may make
definitions more concise and readable. Look for instance at the definitions
of zero, succ, plus, etc. in the rest of this chapter.

8.3 The successor function
The definition of the function succ:Ord -> Ord is very concise. The successor of
any ordinal α is the smallest ordinal strictly greater than α.

Definition succ (alpha : Ord)

:= the_least (fun beta => alpha < beta).

Using succ, we define the following predicates.

Definition is_succ (alpha:Ord)

:= exists beta, alpha = succ beta.

Definition is_limit (alpha:Ord)

:= alpha <> zero /\ ~ is_succ alpha.

How do we prove properties of the successor function? First, we make its
specification explicit.

Definition succ_spec (alpha:Ord) :=

least_member lt (fun z => alpha < z).

Then, we prove that our function succ meets this specification.

Lemma succ_ok :

forall alpha, succ_spec alpha (succ alpha).

Proof.

intro alpha; unfold succ, the_least, the; apply iota_spec.

168 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

alpha: Ord

exists ! x : Ord, succ_spec alpha x

We have now to prove that the set of all ordinals strictly greater than α has
a unique least element. But the singleton set {α} is countable, hence bounded
(by the axiom AX3). Hence; the set {β ∈ O|α < β} is not empty and therefore
has a unique least element.

The rest of the Coq proof script is quite short.

destruct (@AX3 (Singleton alpha)).

- apply countable_singleton.

- unfold succ_spec; apply the_least_unicity; exists x.

apply H; split.

Qed.

We can “uncap” the description operator for proving properties of the succ

function.

Lemma lt_succ (alpha : Ord): alpha < succ alpha.

Proof.

destruct (succ_ok alpha); tauto.

Qed.

Lemma lt_succ_le (alpha beta : Ord):

alpha < beta -> succ alpha <= beta.

Proof with eauto with schutte.

intros H; pattern (succ alpha); apply the_least_ok ...

exists (succ alpha); red;apply lt_succ ...

Qed.

Lemma lt_succ_le_2 (alpha beta : Ord):

alpha < succ beta -> alpha <= beta.

Lemma succ_mono (alpha beta : Ord):

alpha < beta -> succ alpha < succ beta.

Lemma succ_monoR (alpha beta : Ord) :

succ alpha < succ beta -> alpha < beta.

Lemma succ_injection (alpha beta : Ord) :

succ alpha = succ beta -> alpha = beta.

Lemma succ_zero_diff (alpha : Ord): succ alpha <> zero.

Lemma zero_lt_succ : forall alpha, zero < succ alpha.

Lemma lt_succ_lt (alpha beta : Ord) :

is_limit beta -> alpha < beta -> succ alpha < beta.

8.4. FINITE ORDINALS 169

8.4 Finite ordinals
Using succ, it is now easy to define recursively all the finite ordinals.

Fixpoint finite (i:nat) : Ord :=

match i with 0 => zero

| S i => succ (finite i)

end.

Notation F i := (finite i).

Coercion finite : nat >-> Ord.

8.5 The definition of omega

In order to define ω, the first infinite ordinal, we use an operator which “returns”
the least upper bound (if it exists) of a subset X ⊆ O. For that purpose, we first
use a predicate: (is_lub D lt X a) if a belongs to D and is the least upper
bound of X (with respect to lt).

Definition upper_bound (M:Type)

(D: Ensemble M)

(lt: relation M)

(X:Ensemble M)

(a:M) :=

forall x, In _ D x -> In _ X x -> x = a \/ lt x a.

Definition is_lub (M:Type)

(D : Ensemble M)

(lt : relation M)

(X:Ensemble M)

(a:M) :=

In _ D a /\ upper_bound D lt X a /\

(forall y, In _ D y ->

upper_bound D lt X y ->

y = a \/ lt a y).

Definition sup_spec X lambda := is_lub ordinal lt X lambda.

Definition sup (X: Ensemble Ord) : Ord := the (sup_spec X).

Notation "'|_|' X" := (sup X) (at level 29) : schutte_scope.

Then, we define the function omega_limit which returns the least upper
bound of the (denumerable) range of any sequence s: nat -> Ord. By AX3 this
range is bounded, hence the set of its upper bounds is not empty and has a least
element. Then we define omega as the limit of the sequence of finite ordinals.

Definition omega_limit (s:nat->Ord) : Ord

170 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

:= |_| (seq_range s).

Definition _omega := omega_limit finite.

Notation omega := (_omega).

Among the numerous properties of the ordinal ω, let us quote the following
ones (proved in Module Schutte.Schutte_basics)

Lemma finite_lt_omega (i : nat) : i < omega.

Lemma zero_lt_omega : zero < omega.

Proof.

change zero with (F 0); apply finite_lt_omega.

Qed.

Lemma lt_omega_finite (alpha : Ord) :

alpha < omega -> exists i:nat, alpha = i.

Lemma is_limit_omega : is_limit omega.

8.5.1 Ordering functions and ordinal addition
After having defined the finite ordinals and the infinite ordinal ω, we define the
sum α+β of two countable ordinals. Schütte’s definition looks like the following
one:

“α+ β is the β-th ordinal greater than or equal to α”

The purpose of this section is to give a meaning to the construction “the
α-th element of X” where X is any non-empty subset of O. We follow Schütte’s
approach, by defining the notion of ordering functions, a way to associate a
unique ordinal to each element of X. Complete definitions and proofs can be
found in Module Schutte.Ordering_Functions).

8.5.2 Definitions
A segment is a set A of ordinals such that, whenever α ∈ A and β < α, then
β ∈ A; a segment is proper if it strictly included in O.

Definition segment (A: Ensemble Ord) :=

forall alpha beta, In A alpha -> beta < alpha -> In A beta.

Definition proper_segment (A: Ensemble Ord) :=

segment A /\ ~ Same_set A ordinal.

Let A be a segment, and B a subset of O : an ordering function for A and B
is a strictly increasing bijection from A to B. The set B is said to be an ordering
segment of A. Our definition in Coq is a direct translation of the mathematical
text of [Sch77].

../theories/html/hydras.Schutte.Schutte_basics.html#finite_lt_omega
../theories/html/hydras.Schutte.Ordering_Functions.html

8.5. THE DEFINITION OF OMEGA 171

Class ordering_function (f : Ord -> Ord)

(A B : Ensemble Ord) : Prop :=

Build_OF {

OF_segment : segment A;

OF_total : forall a, In A a -> In B (f a);

OF_onto : forall b, In B b -> exists a, In A a /\ f a = b;

OF_mono : forall a b, In A a -> In A b -> a < b -> f a < f b

}.

Definition ordering_segment (A B : Ensemble Ord) :=

exists f : Ord -> Ord, ordering_function f A B.

We are now able to associate with any subset B of O its ordering segment
and ordering function.

Definition the_ordering_segment (B : Ensemble Ord) :=

the (fun x => ordering_segment x B).

Definition ord (B : Ensemble Ord) :=

some (fun f => ordering_function f (the_ordering_segment B) B).

Thus (ord B α) is the α-th element of B. Please note that the last definition
uses the epsilon-based operator some and not the. This is due to the fact that
we cannot prove the unicity (w.r.t. Leibniz’ equality) of the ordering function of
a given set. By contrast, we admit the axiom Extensionality_Ensembles, from
the library Coq.Sets.Ensembles, so we use the operator the in the definition of
the_ordering_segment.

One of the main theorems of Ordering_Functions associates a unique segment
and a unique (up to extensionality) ordering function to every subset B of O.

About ordering_function_ex.

ordering_function_ex :

forall B : Ensemble Ord,

exists ! S : Ensemble Ord,

exists f : Ord -> Ord, ordering_function f S B

ordering_function_ex is not universe polymorphic

Arguments ordering_function_ex B

ordering_function_ex is opaque

Expands to: Constant

Ordering_Functions.ordering_function_ex

About ordering_function_unicity.

https://coq.inria.fr/distrib/current/stdlib/Coq.Sets.Ensembles.html
../theories/html/hydras.Schutte.Ordering_Functions.html#ordering_function_ex

172 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

ordering_function_unicity :

forall [B A1 A2 : Ensemble Ord] [f1 f2 : Ord -> Ord],

ordering_function f1 A1 B ->

ordering_function f2 A2 B -> fun_equiv f1 f2 A1 A2

ordering_function_unicity is not universe polymorphic

Arguments ordering_function_unicity [B A1 A2]

[f1 f2]%function_scope O1 O2

ordering_function_unicity is opaque

Expands to: Constant

Ordering_Functions.ordering_function_unicity

Thus, our function ord which enumerates the elements of B is defined in a
non-ambiguous way. Let us quote the following theorems (see Library
Schutte.Ordering_Functions for more details).

(* Theorem 13.3 of Schutte's book *)

Theorem ordering_le : forall f A B,

ordering_function f A B ->

forall alpha, In A alpha -> alpha <= f alpha.

(* Theorem 13.5.2 by Schutte *)

About Th_13_5_2.

Th_13_5_2 :

forall [A B : Ensemble Ord] [f : Ord -> Ord],

ordering_function f A B ->

Closed B -> continuous f A B

Th_13_5_2 is not universe polymorphic

Arguments Th_13_5_2 [A B] [f]%function_scope f_ord

B_closed

Th_13_5_2 is opaque

Expands to: Constant Ordering_Functions.Th_13_5_2

8.5.3 Ordinal addition
We are now ready to define and study addition on the type Ord. The following
definitions and proofs can be consulted in Module Schutte.Addition.v.

Definition plus alpha := ord (ge alpha).

Infix "+" := plus : schutte_scope.

In other words, α+β is the β-th ordinal greater than or equal to α. Thanks
to generic properties of ordering functions, we can show the following properties
of addition on O. First, we prove a useful lemma:

Lemma plus_elim (alpha : Ord) :

forall P : (Ord->Ord)->Prop,

(forall f: Ord->Ord,

../theories/html/hydras.Schutte.Ordering_Functions.html
../theories/html/hydras.Schutte.Addition.html

8.5. THE DEFINITION OF OMEGA 173

ordering_function f ordinal (ge alpha)-> P f) ->

P (plus alpha).

Proof.

intros P H0; now apply H0, plus_ordering.

Qed.

As a use-case, let us prove that 0 is a right neutral element of +.

Lemma alpha_plus_zero (alpha: Ord): alpha + zero = alpha.

Proof.

pattern (plus alpha); apply plus_elim;eauto.

alpha: Ord

forall f : Ord -> Ord,

ordering_function f ordinal (ge alpha) ->

f zero = alpha

(* ... *)

The following lemmas are proved the same way.

Lemma zero_plus_alpha (alpha : Ord): zero + alpha = alpha.

Lemma le_plus_l (alpha beta : Ord) : alpha <= alpha + beta.

Lemma le_plus_r (alpha beta : Ord) : beta <= alpha + beta.

Lemma plus_mono_r (alpha beta gamma : Ord) :

beta < gamma -> alpha + beta < alpha + gamma.

Lemma plus_of_succ (alpha beta : Ord) :

alpha + (succ beta) = succ (alpha + beta).

The following lemmas are not direct applications of plus_elim.

#[global] Instance plus_assoc: Assoc eq plus.

Assoc eq plus

Lemma finite_plus_infinite (n : nat) (alpha : Ord) :

omega <= alpha -> n + alpha = alpha.

It is interesting to compare the proof of these lemmas with the computational
proofs of the corresponding statements in Module Epsilon0.T1. For instance,
the proof of the lemma one_plus_omega uses the continuity of ordering functions
(applied to (plus 1)) and compares the limit of the ω-sequences i(i∈N) and
(1 + i)i(i∈N), whereas in the library Epsilon0/T1, the equality 1 + ω = ω is just
proved with reflexivity!

8.5.3.1 Multiplication by a natural number

The multiplication of an ordinal by a natural number is defined in terms of
addition. This operation is useful for the study of Cantor normal forms.

../theories/html/hydras.Epsilon0.T1.html

174 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Fixpoint mult_Sn (alpha:Ord)(n:nat){struct n} :Ord :=

match n with 0 => alpha

| S p => mult_Sn alpha p + alpha

end.

Definition mult_fin_r alpha n :=

match n with

0 => zero

| S p => mult_Sn alpha p

end.

Infix "*" := mult_fin_r : schutte_scope.

8.6 The exponential of basis ω

In this section, we define the function which maps any α ∈ O to the ordinal
ωα, also written φ0(α). It is an opportunity to apply the definitions and results
of the preceding section. Indeed, Schütte first defines a subset of O: the set of
additive principal ordinals, and φ0 is just defined as the ordering function of
this set.

8.6.1 Additive principal ordinals
Definition 8.1 A non-zero ordinal α is said to be additive principal if, for all
β < α, β + α is equal to α. We call AP the set of additive principal ordinals.

From Module Schutte.AP

Definition AP : Ensemble Ord :=

fun alpha =>

zero < alpha /\

(forall beta, beta < alpha -> beta + alpha = alpha).

8.6.2 The function phi0

Let us call φ0 the ordering function of AP. In the mathematical text, we shall
use indifferently the notations ωα and φ0(α).

Definition _phi0 := ord AP.

Notation phi0 := _phi0.

Notation "'omega^'" := phi0 (only parsing) : schutte_scope.

8.6.3 Omega-towers and the ordinal ε0
Using φ0, we can define recursively the set of finite omega-towers.

../theories/html/hydras.Schutte.AP.html

8.6. THE EXPONENTIAL OF BASIS ω 175

Fixpoint omega_tower (i : nat) : Ord :=

match i with

0 => 1

| S j => phi0 (omega_tower j)

end.

Then, the ordinal ε0 is defined as the limit of the sequence of all finite towers
(a kind of infinite tower).

Definition epsilon0 := omega_limit omega_tower.

The rest of our library AP is devoted to the proof of properties of additive
principal ordinals, hence of the ordering function φ0 and the ordinal ε0 (which
we could not express within the type T1).

8.6.4 Properties of the set AP

The set of additive principal ordinals is not empty: it contains at least the
ordinals 1 and ω.

Lemma AP_one : In AP 1.

Lemma least_AP : least_member lt AP 1.

Lemma AP_omega : In AP omega.

Lemma omega_second_AP :

least_member lt

(fun alpha => 1 < alpha /\ In AP alpha)

omega.

The set AP is closed under addition, and unbounded.

Lemma AP_plus_closed (alpha beta gamma : Ord):

In AP alpha -> beta < alpha -> gamma < alpha ->

beta + gamma < alpha.

Theorem AP_unbounded : Unbounded AP.

Proof.

intro x.

x: Ord

exists y : Ord, In AP y /\ x < y

exists (omega_limit

(fix seq (n : nat) : Ord :=

match n with

| O => succ x

| S p => seq p + seq p

end)).

(* ... *)

Finally, AP is (topologically) closed and ordered by the segment of all count-
able ordinals.

From Module Schutte.Schutte_basics

../theories/html/hydras.Schutte.Schutte_basics.html

176 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Definition Closed (B : Ensemble Ord) : Prop :=

forall M, Included M B -> Inhabited M -> Countable M ->

In B (|_| M).

Theorem AP_closed : Closed AP.

Theorem AP_o_segment : the_ordering_segment AP = ordinal.

8.6.4.1 Properties of the function φ0

The ordering function φ0 of the set AP is defined on the full set O and is contin-
uous (Schütte calls such a function normal).

Theorem normal_phi0 : normal phi0 AP.

The following properties come from the definition of φ0 as the ordering func-
tion of AP. It may be interesting to compare these proofs with the computational
ones described in Chapter 4.

Lemma phi0_elim : forall P : (Ord->Ord)->Prop,

(forall f: Ord->Ord,

ordering_function f ordinal AP -> P f) ->

P phi0.

Proof.

intros P H; apply H, phi0_ordering.

Qed.

Lemma AP_phi0 (alpha : Ord) : In AP (phi0 alpha).

Proof.

pattern phi0; apply phi0_elim.

destruct 1 as [H H0 H1 H2]; apply H0;auto; split.

Qed.

Lemma phi0_zero : phi0 zero = 1.

Lemma phi0_mono (alpha beta : Ord) :

alpha < beta -> phi0 alpha < phi0 beta.

Lemma phi0_mono_weak (alpha beta : Ord) :

alpha <= beta -> phi0 alpha <= phi0 beta.

Lemma phi0_mono_R (alpha beta : Ord) :

phi0 alpha < phi0 beta -> alpha < beta.

Lemma phi0_mono_R_weak (alpha beta: Ord):

phi0 alpha <= phi0 beta -> alpha <= beta.

Lemma phi0_inj (alpha beta : Ord) :

phi0 alpha = phi0 beta -> alpha = beta.

8.6. THE EXPONENTIAL OF BASIS ω 177

Lemma phi0_positive (alpha : Ord): zero < phi0 alpha.

Lemma plus_lt_phi0 (ksi alpha: Ord):

ksi < phi0 alpha -> ksi + phi0 alpha = phi0 alpha.

Lemma phi0_alpha_phi0_beta (alpha beta: Ord) :

alpha < beta -> phi0 alpha + phi0 beta = phi0 beta.

Lemma phi0_sup : forall U: Ensemble Ord,

Inhabited U ->

Countable U ->

phi0 (|_| U) = |_| (image U phi0).

Lemma phi0_of_limit (alpha : Ord) :

is_limit alpha ->

phi0 alpha = |_| (image (members alpha) phi0).

Lemma AP_to_phi0 (alpha : Ord) :

AP alpha -> exists beta, alpha = phi0 beta.

Lemma AP_plus_AP (alpha beta gamma : Ord) :

zero < beta ->

phi0 alpha + beta = phi0 gamma ->

alpha < gamma /\ beta = phi0 gamma.

Lemma is_limit_phi0 (alpha : Ord) :

zero < alpha -> is_limit (phi0 alpha).

Lemma omega_eqn : omega = phi0 1.

Lemma le_phi0 (alpha : Ord) : alpha <= phi0 alpha.

8.6.5 A last example
Let us prove again the equality ω + 42 + ω2 = ω2.Let us recall that ω2 is an
abbreviation of φ0(2), i.e the third additive principal ordinal.

Example Ex42: omega + 42 + omega^2 = omega^2.

Our proof is very different from the computational proof of Sect 4.1.10 on
page 86. By definition of additive principal ordinals, it suffices to prove the
inequality ω + 42 < φ0(2).

178 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

assert (HAP:= AP_phi0 2).

elim HAP; intros _ H0; apply H0; clear H0.

HAP: In AP (phi0 (F 2))

omega + F 42 < phi0 (F 2)

Since the set AP of additive principals is closed under addition (by Lemma
AP_plus_closed, page 175) , it suffices to prove the inequalities ω < φ0(2) and
42 < φ0(2).

Check AP_plus_closed.

AP_plus_closed

: forall alpha beta gamma : Ord,

In AP alpha ->

beta < alpha ->

gamma < alpha -> beta + gamma < alpha

assert (Hlt: omega < omega^2) by

(rewrite omega_eqn; apply phi0_mono, finite_mono;

auto with arith).

HAP: In AP (phi0 (F 2))

Hlt: omega < phi0 (F 2)

omega + F 42 < phi0 (F 2)

apply AP_plus_closed; trivial.

F 42 < phi0 (F 2)

(* ... *)

8.7 More about ε0

Let us recall that the limit ordinal ε0 cannot be written within the type T1.
Since we are now considering the set of all countable ordinals, we can now prove
some properties of this ordinal.

We prove the inequality α < ωα whenever α < ε0. Note that this condition
was implicit in Module Epsilon0.T1.

Lemma lt_phi0 (alpha : Ord):

alpha < epsilon0 -> alpha < phi0 alpha.

The proof is as follows:

1. Since α < ε0, consider the least i such that α is strictly less than the
omega-tower of height i.

2. • If i = 0, then the result is trivial (because α = 0)
• Otherwise let i = j + 1; α is greater than or equal to the omega-

tower of height j. By monotony, φ0(α) is greater than or equal to
the omega-tower of height j + 1, thus strictly greater than α

../theories/html/hydras.Epsilon0.T1.html#lt_phi0

8.8. CRITICAL ORDINALS 179

Moreover, ε0 is the least ordinal α that verifies the equality α = ωα, in other
words, the least fixpoint of the function φ0.

Theorem epsilon0_lfp : least_fixpoint lt phi0 epsilon0.

8.8 Critical ordinals
For any (countable) ordinal α, the set Cr(α) is inductively defined as follows by
Schütte (p.81 of [Sch77]).

• Cr(0) is the set AP of additive principal ordinals.
• If 0 < α, then Cr(α) is the intersection of all the sets of fixpoints

of the Cr(β) for β < α.

This definition is translated in Coq in Module Schutte.Critical, as the least
fixpoint of a functional.

Definition Cr_fun : forall alpha : Ord,

(forall beta : Ord, beta < alpha -> Ensemble Ord) ->

Ensemble Ord

:=

fun (alpha: Ord)

(Cr : forall beta, beta < alpha -> Ensemble Ord)

(x : Ord) => (

(alpha = zero /\ AP x) \/

(zero < alpha /\

forall beta (H:beta < alpha),

In (the_ordering_segment (Cr beta H)) x /\

ord (Cr beta H) x = x)).

Definition Cr (alpha : Ord) : Ensemble Ord :=

(Fix all_ord_acc

(fun (_:Ord) => Ensemble Ord) Cr_fun) alpha.

Lets us denote by φα the ordering function of the set Cr(α) and by Aα its
ordering segment.

Definition phi (alpha : Ord) : Ord -> Ord := ord (Cr alpha).

Definition A_ (alpha : Ord) : Ensemble Ord := the_ordering_segment (Cr alpha).

For instance, we prove that Cr(0) is the set of additive principals and that
ε0 belongs to Cr(1).

Lemma Cr_zero_AP : Cr zero = AP.

Lemma epsilon0_Cr1 : In (Cr 1) epsilon0.

Exercise 8.1 Prove that ε0 is the least element of Cr(1).

../theories/html/hydras.Schutte.Critical.html

180 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

8.8.1 A flavor of infinity
The family of the Cr(α)s is made of infinitely many unbounded (hence infinite)
sets. Let us quote Lemma 5, p. 82 of [Sch77]:

For all α, the set Cr(α) is closed (for the least upper bound of non-
empty countable sets) and unbounded.

We prove this result by a transfinite induction on α of the conjunction of
both properties.

Theorem Unbounded_Cr alpha : Unbounded (Cr alpha).

Theorem Closed_Cr alpha : Closed (Cr alpha).

8.9 Cantor normal form
The notion of Cantor normal form is defined for all countable ordinals. Never-
theless, note that, contrary to the implementation based on type T1, the Cantor
normal form of an ordinal α may contain α as a sub-term1.

We represent Cantor normal forms as lists of ordinals. A list l is a Cantor
normal form of a given ordinal α if it satisfies two conditions:

• The list l is sorted (in decreasing order) w.r.t. the order ≤

• The sum of all the ωβi where the βi are the terms of l (in this order) is
equal to α.

From Schutte.CNF

Definition cnf_t := list Ord.

Fixpoint eval (l : cnf_t) : Ord :=

match l with

| nil => zero

| beta :: l' => phi0 beta + eval l'

end.

Definition sorted (l: cnf_t) :=

LocallySorted (fun alpha beta => beta <= alpha) l.

Definition is_cnf_of (alpha : Ord)(l : cnf_t) : Prop :=

sorted l /\ alpha = eval l.

By transfinite induction on α, we prove that every countable ordinal α has
at least a Cantor normal form.

Theorem cnf_exists (alpha : Ord) :

exists l: cnf_t, is_cnf_of alpha l.

1This would prevent us from trying to represent Cantor normal forms as finite trees (like
in Sect. 4.1.2)

../theories/html/hydras.Schutte.CNF.html#cnf_t

8.9. CANTOR NORMAL FORM 181

By structural induction on lists, we prove that this normal form is unique.

Lemma cnf_unicity l alpha:

is_cnf_of alpha l ->

forall l', is_cnf_of alpha l' -> l = l'.

Theorem cnf_exists_unique (alpha:Ord) :

exists! l: cnf_t, is_cnf_of alpha l.

Proof.

destruct (cnf_exists alpha) as [l Hl]; exists l; split; auto.

now apply cnf_unicity.

Qed.

Finally, the following two lemmas relate ε0 with Cantor normal forms.
If α < ε0, then the Cantor normal form of α is made of ordinals strictly less

than α.

Lemma cnf_lt_epsilon0 : forall l alpha,

is_cnf_of alpha l ->

alpha < epsilon0 ->

Forall (fun beta => beta < alpha) l.

Exercise 8.2 Please consider the following statement :

Lemma cnf_lt_epsilon0_iff :

forall l alpha,

is_cnf_of alpha l ->

(alpha < epsilon0 <-> Forall (fun beta => beta < alpha) l).

Is it true ? You may start this exercise with the file exercises/ordinals/schutte_cnf_counter_ex-
ample.v.

Finally, the Cantor normal form of ε0 is just ωε0 .

Lemma cnf_of_epsilon0 : is_cnf_of epsilon0 [epsilon0].

Proof.

split; [constructor | cbn].

epsilon0 = phi0 epsilon0 + zero

now rewrite alpha_plus_zero, epsilon0_fxp.

Qed.

Project 8.1 Implement pages 82 to 85 of [Sch77] (critical, strongly critical,
maximal critical ordinals, Feferman’s ordinal Γ0).

Remark 8.2 The sub-directory theories/ordinals/Gamma0 contains an (in-
complete, still undocumented) implementation of the set of ordinals below Γ0,
represented in Veblen normal form.

https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/schutte_cnf_counter_example.v
https://github.com/coq-community/hydra-battles/tree/master/exercises/ordinals/schutte_cnf_counter_example.v
https://github.com/coq-community/hydra-battles/tree/master/theories/ordinals/Gamma0

182 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

8.10 An embedding of T1 into Ord

Our library Schutte.Correctness_E0 establishes the link between two very dif-
ferent modelizations of ordinal numbers. In other words, it “validates” a data
structure in terms of a classical mathematical discourse considered as a model.
First, we define a function from T1 into Ord by structural recursion.

Fixpoint inject (t:T1) : Ord :=

match t with

| T1.zero => zero

| T1.cons a n b => AP._phi0 (inject a) * S n + inject b

end.

This function enjoys good commutation properties with respect to the main
operations which allow us to build Cantor normal forms.

Theorem inject_of_zero : inject T1.zero = zero.

Proof. reflexivity. Qed.

Theorem inject_of_finite (n : nat):

inject (\F n) = n.

Theorem inject_of_omega :

inject T1omega = Schutte_basics._omega.

Theorem inject_of_phi0 (alpha : T1):

inject (T1.phi0 alpha) = AP._phi0 (inject alpha).

Theorem inject_plus (alpha beta : T1):

nf alpha -> nf beta ->

inject (alpha + beta)%t1 = inject alpha + inject beta.

Theorem inject_mult_fin_r (alpha : T1) :

nf alpha ->

forall n:nat,

inject (alpha * n)%t1 = inject alpha * n.

Finally, we prove that inject is a bijection from the set of all terms of T1 in
normal form to the set (members epsilon0) of the elements of Ord strictly less
than ε0.

Theorem inject_lt_epsilon0 (alpha : T1):

inject alpha < epsilon0.

Theorem embedding : fun_bijection (nf: Ensemble T1)

(members epsilon0)

inject.

../theories/html/hydras.Schutte.Correctness_E0.html

8.11. RELATED WORK 183

8.10.1 Remarks
Let us recall that the library Schutte depends on five axioms and lies explicitly
in the framework of classical logic with a weak version of the axiom of choice
(please look at the documentation of Coq.Logic.ChoiceFacts).

On the other hand, the other libraries: Epsilon0, Hydra, et Gamma0 do not
import any axioms and are really constructive.

Project 8.2 There is no construction of ordinal multiplication in [Sch77]. It
would be interesting to derive this operation from Schütte’s axioms, and prove
its consistence with multiplication in ordinal notations for ε0 and Γ0.

8.11 Related work
In [Gri13], José Grimm establishes the consistency between our ordinal notations
T1 and T2 (Veblen normal form) and his implementation of ordinal numbers after
Bourbaki’s set theory.

The Gaia project https://github.com/coq-community/gaiamaintains Grimm’s
theory of ordinals as part of coq-community on GitHub. Integration of the
present ordinal theory with Gaia, i.e., relating the different notions of ordinals
and transferring relevant results, is an interesting project. First experiments in
that direction are developped in the theories/gaia/ directory.

../theories/html/hydras.Schutte.Schutte.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.ChoiceFacts.html
../theories/html/hydras.Epsilon0.Epsilon0.html
../theories/html/hydras.Hydra.Hydra.html
../theories/html/hydras.Gamma0.Gamma0.html
https://github.com/coq-community/gaia
https://github.com/coq-community/hydra-battles/blob/master/theories/gaia/

184 CHAPTER 8. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Chapter 9

The Ordinal Γ0 (first draft)

This chapter and the files it presents are still very incomplete, considering the
impressive properties of Γ0 [Gal91]. We hope to add new material soon, and
accept contributions!

To do 9.1 Build a T2Bridge! (note: Gamma0’s wellfoundedness is missing in
Gaia (?).

9.1 Introduction
We present a notation system for the ordinal Γ0, following Chapter V, Section
14 of [Sch77]: “A notation system for the ordinals < Γ0”. We try to be as close
as possible to Schütte’s text and usual practices of Coq developments.

The ordinal Γ0 is defined in Section 13 of [Sch77] as the least strongly critical
ordinal. It is widely known as the Feferman-Schütte ordinal.

Section V, 13 of [Sch77] defines strongly critical and maximal α-critical or-
dinals:

• α is strongly critical if α is α-critical,

• γ is maximal α-critical if γ is α-critical, and, for all ξ > α, γ is not
ξ-critical.

From Schutte.Critical

Definition strongly_critical alpha := In (Cr alpha) alpha.

Definition maximal_critical alpha : Ensemble Ord :=

fun gamma =>

In (Cr alpha) gamma /\

forall xi, alpha < xi -> ~ In (Cr xi) gamma.

Definition Gamma0 := the_least strongly_critical.

Project 9.1 Prove that a (countable) ordinal α is strongly critical iff φα(0) = α
(Theorem 13.13 of [Sch77]).

185

../theories/html/hydras.Schutte.Critical.html#strongly_critical

186 CHAPTER 9. THE ORDINAL Γ0 (FIRST DRAFT)

Project 9.2 Prove that the set of strongly critical ordinals is unbounded and
closed (Theorem 13.14 of [Sch77]). Thus this set is not empty, hence has a least
element. Otherwise, the definition of Γ0 above would be useless.

In the present version of this development, we only study Γ0 as a notation
system, much more powerful than the ordinal notation for ε0.

9.2 The type T2 of ordinal terms
The notation system for ordinals less than γ0 comes from the following theorem
of [Sch77], where ψ α is the ordering function of the set of maximal α-critical
ordinals.

Any ordinal 6= 0 which is not strongly critical can be expressed in
terms of + and ψ.

Project 9.3 This theorem is not formally proved in this development yet. It
should be!

Like in Chapter 4, we define an inductive type with two constructors, one
for 0, the other for the construction ψ(α, β)× (n+1)+ γ, adapting a Manolios-
Vroon-like notation [MV05] to Veblen normal forms.
From Gamma0.T2

Declare Scope T2_scope.

Delimit Scope T2_scope with t2.

Open Scope T2_scope.

Inductive T2 : Set :=

| zero : T2

| gcons : T2 -> T2 -> nat -> T2 -> T2.

Notation "[alpha , beta]" := (gcons alpha beta 0 zero)

(at level 0): T2_scope.

Definition psi alpha beta := [alpha, beta].

Definition psi_term alpha :=

match alpha with zero => zero

| gcons a b n c => [a, b]

end.

Like in chapter 4, we get familiar with the type T2 by recognizing simple
constructs like finite ordinals, ω, etc., as inhabitants of T2.

Notation one := [zero,zero].

Notation FS n := (gcons zero zero n zero).

Definition fin (n:nat) := match n with 0 => zero | S p => FS p end.

../theories/html/hydras.Gamma0.T2.html#T2

9.3. A STRICT ORDER ON T2 187

Coercion fin : nat >-> T2.

Notation omega := [zero,one].

Notation epsilon0 := [one,zero].

Definition epsilon alpha := [one, alpha].

9.3 A strict order on T2
Let us define a strict order on type T2. The following definition is an adapta-
tion of Schütte’s, taking into account the multiplications by a natural number
(inspired by [MV05], and also present in T1).

Inductive lt : T2 -> T2 -> Prop :=

| (* 1 *)

lt_1 : forall alpha beta n gamma, zero t2< gcons alpha beta n gamma

| (* 2 *)

lt_2 : forall alpha1 alpha2 beta1 beta2 n1 n2 gamma1 gamma2,

alpha1 t2< alpha2 ->

beta1 t2< gcons alpha2 beta2 0 zero ->

gcons alpha1 beta1 n1 gamma1 t2<

gcons alpha2 beta2 n2 gamma2

| (* 3 *)

lt_3 : forall alpha1 beta1 beta2 n1 n2 gamma1 gamma2,

beta1 t2< beta2 ->

gcons alpha1 beta1 n1 gamma1 t2<

gcons alpha1 beta2 n2 gamma2

| (* 4 *)

lt_4 : forall alpha1 alpha2 beta1 beta2 n1 n2 gamma1 gamma2,

alpha2 t2< alpha1 ->

[alpha1, beta1] t2< beta2 ->

gcons alpha1 beta1 n1 gamma1 t2<

gcons alpha2 beta2 n2 gamma2

| (* 5 *)

lt_5 : forall alpha1 alpha2 beta1 n1 n2 gamma1 gamma2,

alpha2 t2< alpha1 ->

gcons alpha1 beta1 n1 gamma1 t2<

gcons alpha2 [alpha1, beta1] n2 gamma2

| (* 6 *)

lt_6 : forall alpha1 beta1 n1 n2 gamma1 gamma2,

(n1 < n2)%nat ->

gcons alpha1 beta1 n1 gamma1 t2<

gcons alpha1 beta1 n2 gamma2

188 CHAPTER 9. THE ORDINAL Γ0 (FIRST DRAFT)

| (* 7 *)

lt_7 : forall alpha1 beta1 n1 gamma1 gamma2,

gamma1 t2< gamma2 ->

gcons alpha1 beta1 n1 gamma1 t2<

gcons alpha1 beta1 n1 gamma2

where "o1 t2< o2" := (lt o1 o2): T2_scope.

Seven constructors! In order to get accustomed with this definition, let us
look at a small set of examples, covering all the constructors of lt.

Example Ex1: 0 t2< epsilon0.

Proof. constructor 1. Qed.

Example Ex2: omega t2< epsilon0.

Proof. info_auto with T2. (* uses lt_1 and lt_2 *) Qed.

Example Ex3: gcons omega 8 12 56 t2< gcons omega 8 12 57.

Proof.

constructor 7; constructor 6; auto with arith.

Qed.

Example Ex4: epsilon0 t2< [2,1].

Proof.

apply lt_2; auto with T2.

- apply lt_6; auto with arith.

Qed.

Example Ex5 : [2,1] t2< [2,3].

Proof.

constructor 3; auto with T2.

- constructor 6; auto with arith.

Qed.

Example Ex6 : gcons 1 0 12 omega t2< [0,[2,1]].

Proof.

constructor 4.

- constructor 1.

- constructor 2.

+ constructor 6; auto with arith.

+ constructor 1.

Qed.

Example Ex7 : gcons 2 1 42 epsilon0 t2< [1, [2,1]].

Proof.

constructor 5.

constructor 6; auto with arith.

Qed.

9.4. VEBLEN NORMAL FORM 189

Project 9.4 Write a tactic that solves automatically goals of the form (α t2<

β), where α and β are closed terms of type T2.

9.4 Veblen normal form
Definition 9.1 A term of the form ψ(α1, β1) × n1 + ψ(α2, β2) × n2 + · · · +
ψ(αk, βk)×nk is said to be in [Veblen] normal form if for every i < n, ψ(αi, βi) <
ψ(αi+1, βi+1), all the αi and βi are in normal form, and all the ni are strictly
positive integers.

Inductive nf : T2 -> Prop :=

| zero_nf : nf zero

| single_nf : forall a b n,

nf a ->

nf b -> nf (gcons a b n zero)

| gcons_nf : forall a b n a' b' n' c',

[a', b'] t2< [a, b] ->

nf a -> nf b ->

nf(gcons a' b' n' c')->

nf(gcons a b n (gcons a' b' n' c')).

#[global] Hint Constructors nf : T2.

Let us look at some positive examples (we have to prove some inversion
lemmas before proving counter-examples).

Lemma nf_fin i : nf (fin i).

Proof.

destruct i.

- auto with T2.

- constructor 2; auto with T2.

Qed.

Lemma nf_omega : nf omega.

Proof. compute; auto with T2. Qed.

Lemma nf_epsilon0 : nf epsilon0.

Proof. constructor 2; auto with T2. Qed.

Lemma nf_epsilon : forall alpha, nf alpha -> nf (epsilon alpha).

Proof. compute; auto with T2. Qed.

Example Ex8: nf (gcons 2 1 42 epsilon0).

Proof.

constructor 3; auto with T2.

- apply Ex4.

- apply nf_fin.

- apply nf_fin.

Qed.

190 CHAPTER 9. THE ORDINAL Γ0 (FIRST DRAFT)

9.4.1 Length of a term
The notion of term length is introduced by Schütte as a helper for proving (at
least) the trichotomy property and transitivity of the strict order lt on T2.
These properties are proved by induction on length.

9.4.2 Trichotomy
Trichotomy is another name for the well-known property of decidable total
ordering (like Standard Library’s Compare_dec.lt_eq_lt_dec).

We first prove by induction on l the following lemma:
From Gamma0.Gamma0

Lemma tricho_aux (l: nat) : forall t t': T2,

t2_length t + t2_length t' < l ->

{t t2< t'} + {t = t'} + {t' t2< t}.

Definition lt_eq_lt_dec (t t': T2) : {t t2< t'}+{t = t'}+{t' t2< t}.

Proof.

eapply tricho_aux.

eapply Nat.lt_succ_diag_r.

Defined.

#[global] Instance compare_T2 : Compare T2 :=

fun (t1 t2 : T2) =>

match lt_eq_lt_dec t1 t2 with

| inleft (left _) => Lt

| inleft (right _) => Eq

| inright _ => Gt

end.

Compute compare (gcons 2 1 42 epsilon0) [2,2].

= Lt

: comparison

With the help of compare, we get a boolean version of nf (being in Veblen
normal form).

Fixpoint nfb (alpha : T2) : bool :=

match alpha with

zero => true

| gcons a b n zero => andb (nfb a) (nfb b)

| gcons a b n ((gcons a' b' n' c') as c) =>

match compare [a', b'] [a, b] with

Lt => andb (nfb a) (andb (nfb b) (nfb c))

| _ => false

end

end.

Compute nfb (gcons 2 1 42 epsilon0).

../theories/html/hydras.Gamma0.Gamma0#tricho_aux

9.5. MAIN FUNCTIONS ON T2 191

= true

: bool

Compute nfb (gcons 2 1 42 (gcons 2 2 4 epsilon0)).

= false

: bool

9.5 Main functions on T2

9.5.1 Successor
The successor function is defined by structural recursion.
From Gamma0.T2

Fixpoint succ (a:T2) : T2 :=

match a with zero => one

| gcons zero zero n c => fin (S (S n))

| gcons a b n c => gcons a b n (succ c)

end.

9.5.2 Addition
Like for Cantor normal forms (see Sect. 4.1.9.3), the definition of addition in T2

requires comparison between ordinal terms.
From Gamma0.Gamma0

Fixpoint plus (t1 t2 : T2) {struct t1} : T2 :=

match t1,t2 with

| zero, y => y

| x, zero => x

| gcons a b n c, gcons a' b' n' c' =>

(match compare (gcons a b 0 zero)

(gcons a' b' 0 zero) with

| Lt => gcons a' b' n' c'

| Gt => gcons a b n (c + gcons a' b' n' c')

| Eq => gcons a b (S(n+n')) c'

end)

end

where "alpha + beta" := (plus alpha beta): T2_scope.

Example Ex7 : 3 + epsilon0 = epsilon0.

Proof. trivial. Qed.

9.5.3 The Veblen function φ

The enumeration function of critical ordinals, presented in Sect. 8.8 on page 179,
is recursively defined in type T2.

../theories/html/hydras.Gamma0.T2.html#succ
../theories/html/hydras.Gamma0.Gamma0T2.html#succ

192 CHAPTER 9. THE ORDINAL Γ0 (FIRST DRAFT)

Definition phi (alpha beta : T2) : T2 :=

match beta with

zero => [alpha, beta]

| [b1, b2] =>

(match compare alpha b1

with Datatypes.Lt => [b1, b2]

| _ => [alpha,[b1, b2]]

end)

| gcons b1 b2 0 (gcons zero zero n zero) =>

(match compare alpha b1

with Datatypes.Lt =>

[alpha, (gcons b1 b2 0 (fin n))]

| _ => [alpha, (gcons b1 b2 0 (fin (S n)))]

end)

| any_beta => [alpha, any_beta]

end.

Example Ex8: phi 1 (succ epsilon0) = [1, [1,0] + 1].

Proof. reflexivity. Qed.

Despite its complexity, the function phi is well adapted to proofs by simpli-
fication or computation.

The relation between the constructor ψ and the function φ is studied in [Sch77],
and partially implemented in this development. Please contribute!

For instance, the following theorem states that, if γ is the sum of a limit
ordinal β and a finite ordinal n, and β is a fixpoint of φ(α), then ψ(α, γ) =
φα(γ + 1).

Lemma phi_psi : forall beta gamma n,

nf gamma ->

limit_plus_fin beta n gamma ->

phi alpha beta = beta ->

[alpha, gamma] = phi alpha (succ gamma).

Example Ex9 : [zero, epsilon 2 + 4] = phi 0 (epsilon 2 + 5).

Proof. trivial. Qed.

On the other hand, φ can be expressed in terms of ψ.

Theorem phi_of_psi : forall a b1 b2,

phi a [b1, b2] =

if (lt_ge_dec a b1)

then [b1, b2]

else [a ,[b1, b2]].

Example Ex10 : phi omega [epsilon0, 5] = [epsilon0, 5].

Proof. reflexivity. Qed.

Project 9.5 Please study a way to pretty print ordinal terms in Veblen normal
form (see Section 4.1.5 on page 77).

9.6. AN ORDINAL NOTATION FOR Γ0 193

9.6 An ordinal notation for Γ0

In order to consider type T2 as an ordinal notation, we have to build an instance
of class ON (See Definition page 52).

First, we define a type that contains only terms in Veblen normal form, and
redefine lt and compare by delegation (see for comparison the construction of
type E0 in Sect. 4.1.7.1 on page 81).

Module G0.

Definition LT := restrict nf lt.

Class G0 := mkg0 {vnf : T2; vnf_ok : nfb vnf}.

Definition lt (alpha beta : G0) := T2.lt (@vnf alpha) (@vnf beta).

#[global] Instance compare_G0 : Compare G0 :=

fun alpha beta => compare (@vnf alpha) (@vnf beta).

Then, we buils an instance of class ON. function compare is correct.

#[global] Instance lt_sto : StrictOrder lt.

Lemma lt_wf : well_founded lt.

#[global] Instance Gamma0_comp: Comparable lt compare.

#[global] Instance Gamma0: ON lt compare.

End G0.

Remark 9.1 The proof of lt_wf has been written by Évelyne Contejean, using
her library on the recursive path ordering (see also remark 4.4 on page 90).

Project 9.6 Prove that Epsilon0 (page 90) is a sub-notation system of Gamma0.
Prove that the implementations of succ, +, φ0, etc. are compatible in both

notation systems.
Note that a function T1_inj from T1 to T2 has already been defined. It may

help to complete the task.
From Gamma0.T2

(* injection from T1 *)

Fixpoint T1_to_T2 (alpha :T1) : T2 :=

match alpha with

| T1.zero => zero

| T1.cons a n b => gcons zero (T1_to_T2 a) n (T1_to_T2 b)

end.

Project 9.7 Prove that the notation system Gamma0 is a correct implementation
of the segment [0,Γ0) of the set of countable ordinals.

../theories/html/hydras.Gamma0.T2.html#T1_to_T2

194 CHAPTER 9. THE ORDINAL Γ0 (FIRST DRAFT)

Part II

Ackermann, Gödel, Peano …

195

Chapter 10

General presentation
(draft)

10.1 Introduction
This part contains comments, examples and exercises about Russel O’Connor’s
work on Gödel’s first incompleteness theorem [G8̈6]. O’Connor’s work was pub-
lished in 2005 [O’C05b], and released as a user-contribution of the Coq proof
assistant. This work is now maintained by Coq community [CCk] volunteers
and split into two projects: Goedel [O’C05a] and Hydra-battles [HBk].

The main reference to this work is Russel O’Connor’s article [O’C05b], which
we strongly encourage the reader to consult regularly.

It was the first computer verified proof of the essential incompleteness1 of
Peano arithmetic. The main reference to this work is Russel O’Connor’s arti-
cle [O’C05b], which we strongly encourage the reader to consult regularly.

Several reasons — enumerated below — led us to maintain and document
this work in the framework of Coq community [CCk].

To do 10.1 Cite [Dow23].

• Historical interest in Gödel’s proof and its mechanizations, as shown by
the abundant litterature on this topic (for instance [Smu92, Hof99, CN04]).

• O’Connor’s proof was written at the end of Coq V7, then rewritten at the
beginning of Coq V8. Since then, Coq and its ecosystem evolved a lot
(new styles, tactics, documentation tools, etc.). We think this evolution
should benefit to the original proof-scripts and make their understanding
easier.

• Finally, let us quote Efim Zelmanov.

“The purpose of a proof is understanding” [BBB+22]

We hope that underlying some points of the proof will make easier to
understand this large and technical work.

1Todo: explain “essential”

197

198 CHAPTER 10. GENERAL PRESENTATION (DRAFT)

For technical reasons — mainly in order to simplify the installation and use
of its sub-libraries, we split the project into two main parts: Goedel [O’C05a]
and Hydra-battles [HBk].

Some changes are made to the aforementionned libraries, mainly because
of the recent evolution of Coq and its libraries. Nevertheless, the definitions,
lemmas and theorems of the original contribution have been preserved in this
new release.

These maintenance and documentation jobs have just started, and will prob-
ably be long to complete. Help is welcome!

10.2 File contents
All Russel O’Connor’s files have been stored in two directories, in order to
simplify packages maintenance.

• theories/goedel/: Proofs which depend on CoqPrime package.

• theories/ordinals/Ackermann/ : all the rest: definition of primitive recur-
sive functions, first-order logic, Peano Arithmetic, Gödel’s encoding.

• Some additions we made: examples, exercices, new notations, etc., are
stored in a specific directory theories/ordinal/MoreAck/.

10.2.1 The Ackermann sub-directory
The following main topics are studied in theories/ordinals/Ackermann/: The
following list presents the main modules in a dependance-compatible order.

Primitive Recursive Functions
This topic is discussed in Chapter 11 on page 201.

• Ackermann.extEqualNat
• Ackermann.primRec
• Ackermann.cPair
• MoreAck.PrimRecExamples
• MoreAck.Ack
• MoreAck.AckNotPR

Ackermann function is not primitive recursive

First Order Logic
This part presents Coq definitions and basic properties of first-order lan-
guages and proofs.

• Ackermann.fol
• Ackermann.folProp
• Ackermann.folProof
• Ackermann.model

../theories/html/hydras.Ackermann.extEqualNat.html
../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.Ackermann.cPair.html
../theories/html/hydras.MoreAck.PrimRecExamples.html
../theories/html/hydras.MoreAck.Ack.html
../theories/html/hydras.MoreAck.AckNotPR.html
../theories/html/hydras.Ackermann.fol.html
../theories/html/hydras.Ackermann.folProp.html
../theories/html/hydras.Ackermann.folProof.html
../theories/html/hydras.Ackermann.model.html

10.2. FILE CONTENTS 199

• Ackermann.code
• Ackermann.prLogic
• Ackermann.codeList
• Ackermann.codeFreeVar
• Ackermann.checkPrf
• Ackermann.wellFormed
• Ackermann.codeSubTerm
• Ackermann.codeSubFormula

Natural Deduction Thanks to the Deduction Theorem, we prove many lem-
mas about provability in first-order-logic, many of them can be considered
as natural deduction rules.

• Ackermann.Deduction
• Ackermann.folLogic
• Ackermann.folLogic2
• Ackermann.folLogic3
• Ackermann.folReplace
• Ackermann.subProp
• Ackermann.subAll
• MoreAck.FolExamples

Languages of Arithmetic

• Ackermann.Languages
• Ackermann.LNN
• Ackermann.LNT
• Ackermann.NN Axioms for Natural Numbers and basic properties.
• Ackermann.NNtheory
• Ackermann.PA Peano Arithmetic: axioms and first properties.
• Ackermann.LNN2LNT
• Ackermann.NN2PA
• Ackermann.PAtheory
• Ackermann.PAconsistent
• Ackermann.codePA
• Ackermann.codeNat2Term
• Ackermann.wConsistent
• Ackermann.expressible
• MoreAck.LNN_Examples

Modules dependent on CoqPrime

../theories/html/hydras.Ackermann.code.html
../theories/html/hydras.Ackermann.prLogic.html
../theories/html/hydras.Ackermann.codeList.html
../theories/html/hydras.Ackermann.codeFreeVar.html
../theories/html/hydras.Ackermann.checkPrf.html
../theories/html/hydras.Ackermann.wellFormed.html
../theories/html/hydras.Ackermann.codeSubTerm.html
../theories/html/hydras.Ackermann.codeSubFormula.html
../theories/html/hydras.Ackermann.Deduction.html
../theories/html/hydras.Ackermann.folLogic.html
../theories/html/hydras.Ackermann.folLogic2.html
../theories/html/hydras.Ackermann.folLogic3.html
../theories/html/hydras.Ackermann.folReplace.html
../theories/html/hydras.Ackermann.subProp.html
../theories/html/hydras.Ackermann.subAll.html
../theories/html/hydras.MoreAck.FolExamples.html
../theories/html/hydras.Ackermann.Languages.html
../theories/html/hydras.Ackermann.LNN.html
../theories/html/hydras.Ackermann.LNT.html
../theories/html/hydras.Ackermann.NN.html
../theories/html/hydras.Ackermann.NNtheory.html
../theories/html/hydras.Ackermann.PA.html
../theories/html/hydras.Ackermann.LNN2LNT.html
../theories/html/hydras.Ackermann.NN2PA.html
../theories/html/hydras.Ackermann.PAtheory.html
../theories/html/hydras.Ackermann.PAconsistent.html
../theories/html/hydras.Ackermann.codePA.html
../theories/html/hydras.Ackermann.codeNatToTerm.html
../theories/html/hydras.Ackermann.wConsistent.html
../theories/html/hydras.Ackermann.expressible.html
../theories/html/hydras.MoreAck.LNN_Examples.html

200 CHAPTER 10. GENERAL PRESENTATION (DRAFT)

• Goedel.PRrepresentable
• Goedel.fixPoint
• Goedel.codeSysPrf
• Goedel.rosser
• Goedel.goedel1
• Goedel.rosserPA
• Goedel.goedel2

To do 10.2 Add information on recent developments on formal proofs of Gödel
incompleteness theorems. Justify the decision of working on this development.

10.3 Warning
Russel O’Connors contribution contains more than 42 KLoc. Since its construc-
tion, Coq, its libraries and recommended style have evolved a lot. We have just
started to “modernize” this code. We apologize for provisional inconsistencies
of presentation (code and documentation).

../theories/html/Goedel.PRrepresentable.html
../theories/html/Goedel.fixPoint.html
../theories/html/Goedel.codeSysPrf.html
../theories/html/Goedel.rosser.html
../theories/html/Goedel.goedel1.html
../theories/html/Goedel.rosserPA.html
../theories/html/Goedel.goedel2.html

Chapter 11

Primitive recursive
functions

11.1 Introduction
Primitive recursive functions are a small class of total arithmetic functions from
Nn to N, for some n ∈ N, corresponding to the expressive power of a simple
imperative programming language without while loops, in which every program
execution terminates. Please note that not all total n-ary recursive functions
are primitive recursive (see for instance Sect. 11.7 on page 222).

Primitive recursive relations are boolean total functions whose characteristic
function — obtained by mapping the returned value to 1 (true) or 0 (false) —
is primitive recursive.

11.2 Mathematical definition
The traditional definition of primitive recursive functions is structured as an
inductive definition in five rules: three base cases, and two recursive construction
rules.

zero the natural number 0 is a primitive recursive function without arguments
(in other words, a constant, or a nullary function).

S The successor function S : N → N is primitive recursive.

projections For any i and n, such that 0 < i ≤ n, the projection πi,n : Nn → N,
defined by πi,n(x1, x2, . . . , xn) = xi, is primitive recursive.

composition For any n and m, if h : Nm → N, and g0, . . . , gm−1 : Nn → N are
primitive recursive of n arguments, then the function which maps any tuple
(x0, . . . , xn−1) to h(g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)) : Nn → N
is primitive recursive.

primitive recursion If g : Nn → N and h : Nn+2 → N are primitive recursive,

201

202 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

then the function from Nn+1 into N defined by

f(0, x1, . . . , xn) = g(x1, . . . , xn) (11.1)
f(S(p), x1, . . . , xn) = h(p, f(p, x1, . . . , xn), x1, . . . , xn) (11.2)

is primitive recursive.

Please note the use of dots: . . . in the definition above. Dots are not part
of Gallina’s syntax. Thus, the formal definition of the set of primitive recursive
function will have to overcome this representation problem.

11.2.1 A few (informal) examples
Before playing with primitive recursive functions in Coq, let us get familiar with
their mathematical definition, with the help of a few simple examples, which
will be considered again as Coq terms in Section 11.4.4.1 on page 207.

11.2.1.1 Projections

For instance, the projection π2,3 satisfies the equation π2,3(x, y, z) = y for any
natural numbers x, y and z.

11.2.1.2 Constant functions

The nullary constant function which returns 0 is simply the zero construction.
If we want to consider the unary function which maps any natural number

i to 0, we may built it through the composition construction, instanciated with
n = 1, m = 0, and h = zero.

Exercise 11.1 Let m and k be two natural numbers; please build the primitive
recursive function which maps any tuple t ∈ Nm to k.

11.2.1.3 Addition on natural natural numbers

Addition may be defined by primitive recursion:

0 + x1 := x1

S x0 + x1 := S(x0 + x1)

Both equations can be rewritten as follows:

0 + x1 := g(x1)

S p+ x1 := h(p, p+ x1, x1)

where g(x1) := x1

and h(p, x, x1) := S x

It remains to show that g and h are primitive recursive, which is almost
immediate:

• g is the projection π1,1,

• h is the composition (with n = 3 and m = 1) of the function S and the
projection π2,3 .

11.3. FIRST LOOK AT THE ACKERMANN LIBRARY 203

11.2.1.4 Multiplication on natural natural numbers

The following equations define the product of two natural numbers:

0× x1 := 0

Sx0 × x1 := (x0 × x1) + x1

This function is an instance of the primitive recursion scheme, with n = 1,
g is the constant unary function which returns 0 (see subsection 11.2.1.2 on the
preceding page), and h the function defined by h(p, x, n1) = x+ n1, which can
be written as the composition of + and the projections π2,3 and π3,3 (the three
of them being primitive recursive).

Exercise 11.2 Build a primitive recursive definition of the factorial function,
using the constructions of Section 11.2, addition and multiplication.

11.3 First look at the Ackermann library
We present here a formalization of primitive recursive functions, taken from Rus-
sel O’Connor’s formalization in Coq of Gödel’s incompleteness theorems [O’C05b].

A few additions and/or small changes (mainly notations, and adaptation
to the continuously evolving practices of Coq development) have been made to
O’Connor’s original library. Contributions (under the form of comments, new
examples or exercises) are welcome!

O’Connor’s library on Gödel’s incompleteness theorems contains a little more
than 45K lines of code. The part dedicated to primitive recursive functions and
Peano arithmetic is 32K lines long and is originally structured in 38 modules.
Thus, we propose a partial exploration of this library, through examples and
exercises. Our additions to the original library — mainly examples and counter-
examples —, are stored in the directory theories/ordinals/MoreAck.

In particular, the library MoreAck.AckNotPR contains the well-known proof
that the Ackermann function is not primitive recursive (see Section 11.7 on
page 222). Moreover, the library Hydra.Hydra_Theorems contains a proof that
the length of an hydra battle (according to the initial replication factor) is not
primitive recursive in general.

11.4 Abstract syntax for primitive recursive func-
tions

The formal definition of primitive recursive functions lies in the library Ack-
ermann.primRec, with preliminary definitions in Ackermann.extEqualNat and
Ackermann.misc.

11.4.1 Functions of arbitrary arity
The Ackermann.extEqualNat library allows us to consider primitive functions
on nat, with any number of arguments, in curried form. This is made possible
in by the following definition:

../theories/html/hydras.MoreAck.html
../theories/html/hydras.Hydra_Theorems.html
../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.Ackermann.extEqualNat.html
../theories/html/hydras.Ackermann.misc.html
../theories/html/hydras.Ackermann.extEqualNat.html

204 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

Fixpoint naryFunc (n : nat) : Set :=

match n with

| O => nat

| S n => nat -> naryFunc n

end.

For instance (naryFunc 1) is convertible to nat -> nat and (naryFunc 3) to
nat -> nat -> nat -> nat.
From MoreAck.PrimRecExamples.

Compute naryFunc 3.

= nat → nat → nat → nat

: Set

Check plus: naryFunc 2.

Check 42: naryFunc 0.

Check (fun n p q : nat => n * p + q): naryFunc 3.

11.4.2 Extensional equality
Dependent types make it possible to define recursively extensional equality be-
tween functions of the same arity.
From Ackermann.extEqualNat

Fixpoint extEqual (n : nat) : forall (a b : naryFunc n), Prop :=

match n with

0 => fun a b => a = b

| S p => fun a b => forall c, extEqual p (a c) (b c)

end.

Module Ackermann.primRec defines and export the notation “f =x= g” for
“extEqual n f g” 1

From MoreAck.PrimRecExamples

Compute extEqual 2.

= λ a b : naryFunc 2,

∀ x x0 : nat, a x x0 = b x x0

: naryFunc 2 → naryFunc 2 → Prop

Example extEqual_ex1: (Nat.mul: naryFunc 2) =x= fun x y => y * x + x - x.

Proof.

(Nat.mul : naryFunc 2) =x=

(λ x y : nat, y * x + x - x)

intros x y; cbn.

1in parsing mode, the provided f should be explicitely typed as (naryFunc n).

../theories/html/hydras.MoreAck.PrimRecExamples.html
../theories/html/hydras.Ackermann.extEqualNat.html
../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.MoreAck.PrimRecExamples.html

11.4. ABSTRACT SYNTAX FOR PRIMITIVE RECURSIVE FUNCTIONS205

x, y: nat

x * y = y * x + x - x

Getting rid of the term x-x, we generate two easy-to-solve subgoals.

rewrite <- Nat.add_sub_assoc, Nat.sub_diag.

x, y: nat

x * y = y * x + 0

x, y: nat

x ≤ x

- ring.

- apply le_n.

Qed.

11.4.3 Boolean predicates
Like arithmetic functions, arbitrary boolean predicates may have an arbitrary
number of arguments. The dependent type (naryRel n), defined in the same
way as naryFunc, is the type of n-ary functions from nat into bool.
From Ackermann.extEqualNat

Fixpoint naryRel (n : nat) : Set :=

match n with

| O => bool

| S n => nat -> naryRel n

end.

Definition ltBool (a b : nat) : bool :=

if le_lt_dec b a then false else true.

Definition leBool (a b : nat) : bool :=

if le_lt_dec a b then true else false.

From Ackermann.extEqualNat

Check leBool : naryRel 2.

leBool : naryRel 2

: naryRel 2

Compute leBool 4 5.

= true

: bool

Compute charFunction 2 leBool 4 5.

= 1

: nat

../theories/html/hydras.Ackermann.extEqualNat.html
../theories/html/hydras.Ackermann.extEqualNat.html

206 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

Compute charFunction 2 ltBool 7 7.

= 0

: nat

11.4.4 A Data-type for Primitive Recursive Functions
O’Connor’s formalization of primitive recursive functions takes the form of two
mutually inductive dependent data types, each constructor of which is associated
with one of these rules. These two types are (PrimRec n) (primitive recursive
functions of n arguments), and (PrimRecs n m) (m-tuples of primitive recursive
functions of n arguments).

Remark 11.1 The PrimRec type family is indeed a kind of programming lan-
guage for writing primitive recursive functions. The link to the mathematical
notion of such functions will be established in Section 11.4.5 when we give
a semantics which maps any term of type (PrimRec n) to a function of type
(naryFunc n).

From Ackermann.primRec.

Inductive PrimRec : nat -> Set :=

| succFunc : PrimRec 1

| zeroFunc : PrimRec 0

| projFunc : forall n m : nat, m < n -> PrimRec n

| composeFunc :

forall (n m : nat) (g : PrimRecs n m) (h : PrimRec m),

PrimRec n

| primRecFunc :

forall (n : nat) (g : PrimRec n) (h : PrimRec (S (S n))),

PrimRec (S n)

with PrimRecs : nat -> nat -> Set :=

| PRnil : forall n : nat, PrimRecs n 0

| PRcons : forall n m : nat, PrimRec n -> PrimRecs n m ->

PrimRecs n (S m).

Remark 11.2 Beware of the conventions used in the primRec library! The con-
structor (projFunc n m) is associated with the projection πn−m,n and not πn,m.
For instance, the projection π2,5 defined by π2,5(a, b, c, d, e) = b corresponds to
the term (projFunc 5 3 H), where H is a proof of 3 < 5. This fact is reported in
the comments of primRec.v. We presume that this convention makes it easier
to define the evaluation function (evalProjFunc n) (see the next sub-section).
Trying the other convention is left as an exercise.

In order to make the terms of type Primrec n more readable, we introduce
some notations, mainly inspired by Coq’s standard library’s notations for vec-
tors.

Module PRNotations.

Declare Scope pr_scope.

Delimit Scope pr_scope with pr.

../theories/html/hydras.Ackermann.primRec.html

11.4. ABSTRACT SYNTAX FOR PRIMITIVE RECURSIVE FUNCTIONS207

Notation "h :: t" := (PRcons _ _ h t) (at level 60, right associativity)

: pr_scope.

Notation "[x]" := (PRcons _ _ x (PRnil _)) : pr_scope.

Notation "[x ; y ; .. ; z]" :=

(PRcons _ _ x (PRcons _ _ y .. (PRcons _ _ z (PRnil _)) ..)) : pr_scope.

Notation PRcomp f v := (composeFunc _ _ v f).

Notation PRrec f0 fS := (primRecFunc _ f0 fS).

(** Popular projections *)

Notation pi1_1 := (projFunc 1 0 (le_n 1)).

Notation pi1_2 := (projFunc 2 1 (le_n 2)).

Notation pi2_2 := (projFunc 2 0 (le_S 1 1 (le_n 1))).

Notation pi1_3 := (projFunc 3 2 (le_n 3)).

Notation pi2_3 := (projFunc 3 1 (le_S 2 2 (le_n 2))).

Notation pi3_3 := (projFunc 3 0 (le_S 1 2 (le_S 1 1 (le_n 1)))).

End PRNotations.

11.4.4.1 Examples

Let us show how the functions described in 11.2.1 can be described by terms of
type “PrimRec _”.

From MoreAck.primRecExamples.

Module MoreExamples.

(** The unary constant function which returns 0 *)

Definition cst0 : PrimRec 1 := (PRcomp zeroFunc (PRnil _))%pr.

(** The unary constant function which returns i *)

Fixpoint cst (i: nat) : PrimRec 1 :=

match i with

0 => cst0

| S j => (PRcomp succFunc [cst j])%pr

end.

Compute cst 7.

../theories/html/hydras.MoreAck.PrimRecExamples.html

208 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

= PRcomp succFunc

[PRcomp succFunc

[PRcomp succFunc

[PRcomp succFunc

[PRcomp succFunc

[PRcomp succFunc

[PRcomp succFunc

[PRcomp zeroFunc (PRnil 1)]]]]]]]%pr

: PrimRec 1

(** Addition *)

Definition plus : PrimRec 2 :=

(PRrec pi1_1 (PRcomp succFunc [pi2_3]))%pr.

(** Multiplication *)

Definition mult : PrimRec 2 :=

PRrec cst0

(PRcomp plus [pi2_3; pi3_3]%pr).

(** Factorial function *)

Definition fact : PrimRec 1 :=

(PRrec

(PRcomp succFunc [zeroFunc])

(PRcomp mult [pi2_2; PRcomp succFunc [pi1_2]]))%pr.

End MoreExamples.

11.4.5 A little bit of semantics
Inhabitants of type (PrimRec n) are not Coq functions like Nat.mul,
Arith.Factorial.fact, etc. but terms of an abstract syntax for the language
of primitive recursive functions. The bridge between this language and the
word of usual functions is an interpretation function (evalprimRec n) of type
PrimRecn→ naryFuncn. This function is defined by mutual recursion, together
with the function (evalprimRecS n m) of type
(PrimRecsnm→ Vector.t (naryFuncn)m).

Both functions are mutually defined through dependent pattern matching.
We advise the readers who would feel uneasy with dependent types to consult
Adam Chlipala’s cpdt book [Chl11]. We invite the reader to look also at the
helper functions in Ackermann.primRec, namely evalConstFunc, evalProjFunc,
evalComposeFunc, and evalPrimRecFunc, etc.

Fixpoint evalPrimRec (n : nat) (f : PrimRec n) {struct f} :

naryFunc n :=

match f in (PrimRec n) return (naryFunc n) with

| succFunc => S

| zeroFunc => 0

| projFunc n m pf => evalProjFunc n m pf

| composeFunc n m l f =>

evalComposeFunc n m (evalPrimRecs _ _ l) (evalPrimRec _ f)

../theories/html/hydras.Ackermann.primRec.html

11.4. ABSTRACT SYNTAX FOR PRIMITIVE RECURSIVE FUNCTIONS209

| primRecFunc n g h =>

evalPrimRecFunc n (evalPrimRec _ g) (evalPrimRec _ h)

end

with evalPrimRecs (n m : nat) (fs : PrimRecs n m) {struct fs} :

Vector.t (naryFunc n) m :=

match fs in (PrimRecs n m) return (Vector.t (naryFunc n) m) with

| PRnil a => Vector.nil (naryFunc a)

| PRcons a b g gs =>

Vector.cons _ (evalPrimRec _ g) _ (evalPrimRecs _ _ gs)

end.

Notation PReval f := (evalPrimRec _ f).

Notation PRevalN fs := (evalPrimRecs _ _ fs).

(** [p] is a correct implementation of [f] in [PrimRec n] *)

Definition PRcorrect {n:nat}(p:PrimRec n)(f: naryFunc n) :=

PReval p =x= f.

11.4.5.1 A few tests

The following examples show that the functions evalPrimRec and evalPrimRecs

behave well w.r.t. Coq’s reduction rules. They can also be considered as ele-
mentary tests of our definitions of cst0, cst, plus, mult and fact.
From MoreAck.PrimRecExamples.

Compute PReval pi2_3 10 20 30.

= 20

: nat

Compute Vector.map (fun f => f 10 20 30) (PRevalN [pi2_3; pi1_3]%pr).

= [20; 10]

: t nat 2

Compute PReval cst0 42.

= 0

: nat

Compute PReval (cst 7) 19.

= 7

: nat

Compute PReval plus 9 4.

= 13

: nat

../theories/html/hydras.MoreAck.PrimRecExamples.html

210 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

Compute PReval mult 9 4.

= 36

: nat

Compute PReval fact 5.

= 120

: nat

11.4.5.2 Correctness proofs

It is now time to prove that our functions cst0, cst, plus, mult and fact are
correct implementations in PrimRec of the mathematical functions we consider.

Lemma cst0_correct : PRcorrect cst0 (fun _ => 0).

Proof. intros ?; reflexivity. Qed.

Lemma cst_correct (k:nat) : PRcorrect (cst k) (fun _ => k).

Proof.

induction k as [| k IHk]; simpl; intros p.

- reflexivity.

- cbn; now rewrite IHk.

Qed.

Lemma plus_correct: PRcorrect plus Nat.add.

Proof.

intros n; induction n as [| n IHn].

- intro; reflexivity.

- intro p; cbn in IHn |- *; now rewrite IHn.

Qed.

Remark mult_eqn1 n p:

PReval mult (S n) p =

PReval plus (PReval mult n p) p.

Proof. reflexivity. Qed.

Lemma mult_correct: PRcorrect mult Nat.mul.

Proof.

intro n; induction n as [| n IHn].

- intro p; reflexivity.

- intro p; rewrite mult_eqn1, (IHn p) , plus_correct. cbn. ring.

Qed.

Lemma fact_correct : PRcorrect fact Coq.Arith.Factorial.fact.

(* ... *)

11.5. PROVING THAT A GIVEN COQ ARITHMETIC FUNCTION IS PRIMITIVE RECURSIVE211

11.5 Proving that a given Coq arithmetic func-
tion is primitive recursive

The example in the preceding section clearly shows that, in order to prove that
a given arithmetic function (defined in Gallina as usual) is primitive recursive,
trying to type a term of type (PrimRec n) is not a good method, since such terms
may be too large, even for simple arithmetic functions. The method proposed
in the library Ackermann.primRec is the following one:

1. Define a type corresponding to the statements of the form ”the n-ary
function f is primitive recursive ”.

2. Prove handy lemmas which may help to prove that a given function is
primitive recursive. These lemmas can be considered as a way to build
silently large terms of type (PrimRec n) in intermediate steps of the proof.
More, we can associate tactics with these lemmas.

11.5.1 The predicate isPR

Let f be an arithmetic function of arity n. We say that f is primitive recursive
if f is extensionally equal to the interpretation of some term of type PrimRec

n.
From Ackermann.primRec.

Class isPR (n : nat) (f : naryFunc n) : Set :=

is_pr : {p : PrimRec n | extEqual n (PReval p) f}.

Definition fun2PR {n:nat}(f: naryFunc n)

{p: isPR _ f}: PrimRec n := proj1_sig p.

Class isPRrel (n : nat) (R : naryRel n) : Set :=

is_pr_rel: isPR n (charFunction n R).

The library primRec contains a large catalogue of lemmas allowing to prove
statements of the form (isPR n f). We won’t list all these lemmas here, but
give a few examples of how they may be searched, then applied.

Remark 11.3 In the library primRec, all these lemmas are opaque (registered
with Qed). Thus they do not allow the user to look at the witness of a proof of a
isPR statement. It may be useful to make transparent all the instances of isPR
in the Ackermann and goedel libraries.

11.5.1.1 Elementary proofs of isPR statements

Simple proofs of statements (isPR n f) may be just applications of the construc-
tor is_pr, often thanks to the tactic call exists x where x is some (hopefully)
correct term of type (PrimRec n).

Let us show a few examples from Ackermann.MoreAck.PrimRecExamples.v2.
2Some of them are also in Ackermann.primRec.

../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.MoreAck.PrimRecExamples.html
../theories/html/hydras.Ackermann.primRec.html

212 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

#[export] Instance zeroIsPR : isPR 0 0.

Proof.

exists zeroFunc.

PReval zeroFunc =x= 0

cbn.

0 = 0

reflexivity.

Qed.

#[export] Instance succIsPR : isPR 1 S.

Proof.

exists succFunc; cbn; reflexivity.

Qed.

#[export] Instance addIsPR : isPR 2 Nat.add.

Proof. exists plus; intros n p; apply plus_correct. Qed.

Projections are proved primitive recursive, case by case (many examples
in Ackermann.primRec). Please notice again that the name of the projection
follows the mathematical tradition, whilst the arguments of projFunc use another
convention (cf remark 11.2 on page 206).

#[export] Instance pi2_5IsPR : isPR 5 (fun a b c d e => b).

Proof.

assert (H: 3 < 5) by auto.

exists (projFunc 5 3 H).

cbn; reflexivity.

Qed.

Please note that the projection π1,1 is just the identity on nat, and is realized
by (projFunc 1 0) (see Sect. 11.4.4.1 on page 207).
From Ackermann.primRec.

#[export] Instance idIsPR : isPR 1 (fun x : nat => x).

Proof.

exists pi1_1; cbn; reflexivity.

Qed.

11.5.1.2 The predecessor (total) function

The predecessor function is defined by the following equations:

pred(0) = 0

pred(1 + n) = n = π1,2(n, pred(n))

This definition is easy to translate into a term of type PrimRec 1.

../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.Ackermann.primRec.html

11.5. PROVING THAT A GIVEN COQ ARITHMETIC FUNCTION IS PRIMITIVE RECURSIVE213

Definition xpred := primRecFunc 0 zeroFunc pi1_2.

Compute evalPrimRec 1 xpred 10.

= 9

: nat

#[export] Instance predIsPR : isPR 1 Nat.pred.

Proof.

exists xpred; intro n; induction n; now cbn.

Qed.

11.5.1.3 Using function composition

Let us look at the proof that any constant n of type nat has type (PR 0) (lemma
const0_NIsPR of primRec). We carry out a proof by induction on n, the base case
of which is already proven. Now, let us assume n is PR 0, and call (x : PrimRec 0)
its “realizer”. Thus we would like to compose this constant function with the
unary successor function.

This is exactly the role of the function (composeFunc 0 1). Here is a quite
simple proof of const0_NIsPR.

From MoreAck.PrimRecExamples.

#[export] Instance const0_NIsPR n : isPR 0 n.

Proof.

induction n as [| n [x Hx]].

isPR 0 0

n: nat

x: PrimRec 0

Hx: PReval x =x= n

isPR 0 n.+1

- apply zeroIsPR.

- exists (composeFunc _ _ [x] succFunc)%pr; cbn in *; intros;

now rewrite Hx.

Qed.

11.5.1.4 Another proof that Nat.add is primitive recursive

We have already proven that Nat.add is primitive recursive. The following al-
ternative proof, — more detailed —, shows how to search and apply lemmas
from the Ackermann library.

Let us look for some lemma which could help to prove a given recursive
arithmetic binary function is primitive recursive.

Search (isPR 2 (fun _ _ => nat_rec _ _ _ _)).

../theories/html/hydras.MoreAck.PrimRecExamples.html

214 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

ind1ParamIsPR:

∀ f : nat → nat → nat → nat,

isPR 3 f

→ ∀ g : nat → nat,

isPR 1 g

→ isPR 2

(λ a b : nat,

nat_rec (λ _ : nat, nat) (g b)

(λ x y : nat, f x y b) a)

Good! Let us express addition in terms of nat_rec.

Definition add' x y :=

nat_rec (fun n : nat => nat)

y

(fun z t => S t)

x.

Lemma add'_ok:

extEqual 2 add' Nat.add.

Proof.

intro x; induction x; cbn; auto.

intro y; cbn; now rewrite <- (IHx y).

Qed.

The lemma Ackermann.isPRextEqual tells us that if a function g is exten-
sionally equal to a primitive recursive function, then g is primitive recursive
too.

Check isPRextEqual.

isPRextEqual

: ∀ (n : nat) (f g : naryFunc n),

isPR n f → f =x= g → isPR n g

Let us start our proof.

#[export] Instance addIsPR' : isPR 2 Nat.add.

Proof.

isPR 2 Nat.add

apply isPRextEqual with add'.

isPR 2 add'

add' =x= Nat.add

-

isPR 2 add'

unfold add'; apply ind1ParamIsPR.

11.5. PROVING THAT A GIVEN COQ ARITHMETIC FUNCTION IS PRIMITIVE RECURSIVE215

isPR 3 (λ _ y _ : nat, y.+1)

isPR 1 (λ b : nat, b)

We already proved that S is PR 1, but we need to consider a function of three
arguments, which ignores its first and third arguments. Fortunately, the library
primRec already contains lemmas adapted to this kind of situation.

+

isPR 3 (λ _ y _ : nat, y.+1)

Search (isPR 1 _ -> isPR 3 _).

filter001IsPR:

∀ g : nat → nat,

isPR 1 g → isPR 3 (λ _ _ c : nat, g c)

filter100IsPR:

∀ g : nat → nat,

isPR 1 g → isPR 3 (λ a _ _ : nat, g a)

filter010IsPR:

∀ g : nat → nat,

isPR 1 g → isPR 3 (λ _ b _ : nat, g b)

compose3_1IsPR:

∀ f : nat → nat → nat → nat,

isPR 3 f

→ ∀ g : nat → nat,

isPR 1 g → isPR 3 (λ x y z : nat, g (f x y z))

isPR 3 (λ _ y _ : nat, y.+1)

apply filter010IsPR, succIsPR.

Thus, our first subgoal is easily solved. The rest of the proof is just an
application of already proven lemmas.

+ apply idIsPR.

- apply add'_ok.

Qed.

Exercise 11.3 A few lemmas similar to filter010IsPR, also shown in the primRec
library help the user to control the arity of functions. Thus, the reader may
look at them, and invent h.er.is simple examples of application.

11.5.1.5 More examples

The following proof decomposes the double function as the composition of multi-
plication with the identity and the constant function which returns 2. Note that
the lemma const1_NIsPR considers this function as an unary function (unlike
const0_NIsPR).

216 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

Definition double (n:nat) := 2 * n.

#[export] Instance doubleIsPR : isPR 1 double.

Proof.

unfold double; apply compose1_2IsPR.

isPR 1 (λ _ : nat, 2)

isPR 1 (λ x : nat, x)

isPR 2 Init.Nat.mul

- apply const1_NIsPR.

- apply idIsPR.

- apply multIsPR.

Qed.

Exercise 11.4 Prove that the following functions are primitive recursive.

Fixpoint exp n p :=

match p with

0 => 1

| S m => exp n m * n

end.

Fixpoint tower2 n :=

match n with

0 => 1

| S p => exp 2 (tower2 p)

end.

Hint: You may have to look again at the lemmas of the library Acker-
mann.primRec if you meet some difficulty. You may start this exercise with the
file exercises/primrec/MorePRExamples.v.

11.5.2 More advanced examples
11.5.2.1 The minimum of two natural numbers

Let a and b be two natural numbers. The minimum of a and b is a if a ≤ b,
otherwise b.

Thus, we propose the following definition:

Let min_alt (a b: nat) : nat :=

(charFunction 2 leBool a b) * a +

(charFunction 2 ltBool b a) * b.

Here is a sketch of proof that standard library’s min is primitive recursive.
The reader is kindly invited to fill the missing steps.

../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.Ackermann.primRec.html
https://github.com/coq-community/hydra-battles/blob/master/exercises/primrec/MorePRExamples.v

11.5. PROVING THAT A GIVEN COQ ARITHMETIC FUNCTION IS PRIMITIVE RECURSIVE217

Lemma min_alt_correct : extEqual 2 min_alt Nat.min.

Proof.

(* ... *)

#[local] Instance minPR_PR : isPR 2 min_alt.

Proof.

(* ... *)

#[export] Instance minIsPR : isPR 2 Nat.min.

Proof.

destruct minPR_PR as [f Hf].

exists f; eapply extEqualTrans with (1:= Hf).

apply min_alt_correct.

Qed.

Exercise 11.5 Write a simple and readable proof that the Fibonacci function
is primitive recursive.

Fixpoint fib (n:nat) : nat :=

match n with

| 0 => 1

| 1 => 1

| S ((S p) as q) => fib q + fib p

end.

Hint: You may use as a helper the function which computes the pair
(fib(n + 1), fib(n)). Library Ackermann.cPair contains the definition of the
encoding of N2 into N, and the proofs that the associated constructor and pro-
jections are primitive recursive.

Please find here some definitions and lemmas you may use in order to solve
this exercise (non-exhaustive list).

Import LispAbbreviations.

Check cPair.

cPair

: nat -> nat -> nat

Print car.

Notation car := cPairPi1

Check car.

car

: nat -> nat

Check cdr.

cdr

: nat -> nat

Search cPair isPR.

cPairIsPR: isPR 2 cPair

Search car isPR.

cPairPi1IsPR: isPR 1 car

../theories/html/hydras.Ackermann.cPair.html

218 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

Search car cdr cPair.

cPairProjections:

forall a : nat, cPair (car a) (cdr a) = a

You may start this exercise with the file exercises/primrec/FibonacciPR.v.

See also the chapter 15 on Gödel’s encodings.

Exercise 11.6 (The integer square root)

1) Please consider the following specification of the function boundedSearch de-
fined in Ackermann.primRec.

Check boundedSearch.

boundedSearch

: naryRel 2 -> nat -> nat

Search boundedSearch.

boundSearchIsPR:

forall P : naryRel 2,

isPRrel 2 P -> isPR 1 (boundedSearch P)

boundedSearch1:

forall (P : naryRel 2) (b x : nat),

x < boundedSearch P b -> P b x = false

boundedSearch2:

forall (P : naryRel 2) (b : nat),

boundedSearch P b = b \/

P b (boundedSearch P b) = true

Prove the following lemmas.

Lemma boundedSearch3 :

forall (P : naryRel 2) (b : nat), boundedSearch P b <= b.

Lemma boundedSearch4 :

forall (P : naryRel 2) (b : nat),

P b b = true ->

P b (boundedSearch P b) = true.

2) Let us consider the following definition of the relation “ r is the integer square
root of n ”.

Definition isqrt_spec n r := r * r <= n < r.+1 * r.+1.

Prove that the function which returns the integer square root of any natural
number is primitive recursive (you may use the function boundedSearch for this
purpose).

You may start this exercise with the file exercises/primrec/isqrt.v.

https://github.com/coq-community/hydra-battles/blob/master/exercises/primrec/FibonacciPR.v
../theories/html/hydras.Ackermann.primRec.html
https://github.com/coq-community/hydra-battles/blob/master/exercises/primrec/isqrt.v

11.6. PROOFS BY INDUCTION OVER ALL PRIMITIVE RECURSIVE FUNCTIONS219

11.6 Proofs by induction over all primitive re-
cursive functions

Let us consider the following theorem (see for instance [Pla13]).

There exists at least a total arithmetic function, e.g. the Ackermann
function, which is not primitive recursive.

We can prove this theorem in three successive steps:

• Define Ackermann function in Gallina.

• Define and prove a property shared by any primitive recursive functions.

• Prove that Ackermann function does not satisfy this property.

We show how to adapt the classic proof (see for instance [Pla13]) to the
constraints of Gallina. We hope this formal proof is a nice opportunity to
explore the treatment of primitive recursive functions by R. O’Connor, and to
play with dependent types.

11.6.1 Ackermann function
Ackermann function is traditionally defined as a function from N × N into N,
through three equations:

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

Let us try to define this function in Coq (in curried form).

Fail

Fixpoint Ack (m n : nat) : nat :=

match m, n with

| 0, n => S n

| m.+1, 0 => Ack m 1

| m0.+1, p.+1 => Ack m0 (Ack m p)

end.

The command has indeed failed with message:

Cannot guess decreasing argument of fix.

A possible workaround is to make m be the decreasing argument, and define
— within m’s scope — a local helper function which computes (Ack m n) for
any n. This way, both functions Ack and Ackm have a (structurally) strictly
decreasing argument.

Module Alt.

Fixpoint Ack (m n : nat) : nat :=

220 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

match m with

| O => n.+1

| p.+1 => let fix Ackm (n : nat) :=

match n with

| O => Ack p 1

| S q => Ack p (Ackm q)

end

in Ackm n

end.

Compute Ack 3 2.

= 29

: nat

End Alt.

We preferred to define a variant which uses explicitly the functional iterate,
where (iteratef n) is the n-th iteration of f 3. It makes it possible to apply a
few lemmas proved in Prelude.Iterates, for instance about the monotony of the
n-th iterate of a given function.
From Prelude.Iterates.

Fixpoint iterate {A:Type}(f : A -> A) (n: nat)(x:A) :=

match n with

| 0 => x

| S p => f (iterate f p x)

end.

Lemma iterate_le_n_Sn (f: nat -> nat):

(forall x, x <= f x) ->

forall n x, iterate f n x <= iterate f (S n) x.

Thus, our definition of the Ackermann function is as follows:
From MoreAck.Ack.

Fixpoint Ack (m:nat) : nat -> nat :=

match m with

| 0 => S

| n.+1 => fun k => iterate (Ack n) k.+1 1

end.

Compute Ack 3 2.

= 29

: nat

Exercise 11.7 The file MoreAck.Ack presents two other definitions of the Ack-
ermann functions based on the lexicographic ordering on N×N. Prove that the
four functions are extensionally equal.

3Please do not mistake iterate (i.e. Prelude.iterate) for the monomorphic primRec.iterate,
which does not share the same order of arguments.

../theories/html/hydras.Prelude.Iterates.html
../theories/html/hydras.Prelude.Iterates.html
../theories/html/hydras.MoreAck.Ack.html
../theories/html/hydras.MoreAck.Ack.html

11.6. PROOFS BY INDUCTION OVER ALL PRIMITIVE RECURSIVE FUNCTIONS221

11.6.1.1 First properties of the Ackermann function

The three first lemmas make us sure that our function Ack satisfies the “usual”
equations.

Lemma Ack_0 : Ack 0 = S.

Proof refl_equal.

Lemma Ack_S_0 m : Ack m.+1 0 = Ack m 1.

Proof. reflexivity. Qed.

Lemma Ack_S_S : forall m p,

Ack m.+1 p.+1 = Ack m (Ack m.+1 p).

Proof. reflexivity. Qed.

The order of growth of the Ackermann function w.r.t. its first argument is
illustrated by the following equalities.

Lemma Ack_1_n n : Ack 1 n = n.+2.

Lemma Ack_2_n n: Ack 2 n = 2 * n + 3.

Lemma Ack_3_n n: Ack 3 n = exp2 n.+3 - 3.

Lemma Ack_4_n n : Ack 4 n = hyper_exp2 n.+3 - 3.

Remark 11.4 The statements above can be rewritten in a more uniform way:

For m ∈ 1..4, Ackmn = fm (n+ 3)− 3, where

f1(n) =n+ 2

f2(n) =n× 2

f3(n) = 2n

f4(n) = 22
...2

(n levels)

An important property of the Ackermann function helps us to overcome the
difficulty raised by nested recursion, by climbing up the hierarchy Ackn_ (n ∈
N).
From MoreAck.Ack.

Lemma nested_Ack_bound k m n :

Ack k (Ack m n) <= Ack (2 + max k m) n.

Please note also that for any given n, the unary function (Ackn) is primitive
recursive.

From MoreAck.AckNotPR.

#[export] Instance Ackn_IsPR (n: nat) : isPR 1 (Ack n).

Proof.

induction n.

../theories/html/hydras.MoreAck.Ack.html
../theories/html/hydras.MoreAck.AckNotPR.html

222 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

11.7 Ackermann function is not primitive recur-
sive

In order to prove that Ack (considered as a function of two arguments) is not
primitive recursive, the usual method consists in two steps:

1. Prove that for any primitive recursive function f : N → N → N, there
exists some natural number n depending on f , such that, for any x and
y, f x y ≤ Ackn (maxx y) (we say that f is “majorized” by Ack).

2. Show that Ack fails to satisfy this property.

First, we have to prove that any primitive function of two arguments is
majorized by Ack. Let us look at the induction principles generated for the
types PrimRec n.

If we look at the inductive definition of primitive recursive functions, page 206,
it is obvious that a proof by induction on the construction of primitive recursive
functions must consider functions of any arity.

From Ackermann.primRec.

Scheme PrimRec_PrimRecs_ind := Induction for PrimRec Sort Prop

with PrimRecs_PrimRec_ind := Induction for PrimRecs Sort Prop.

Arguments PrimRec_PrimRecs_ind P P0 : rename.

Arguments PrimRecs_PrimRec_ind P P0 : rename.

Check PrimRec_PrimRecs_ind.

../theories/html/hydras.Ackermann.primRec.html

11.7. ACKERMANN FUNCTION IS NOT PRIMITIVE RECURSIVE 223

PrimRec_PrimRecs_ind

: ∀ (P : ∀ n : nat, PrimRec n → Prop) (P0 : ∀ n

n0 : nat,

PrimRecs

n n0

→ Prop),

P 1 succFunc

→ P 0 zeroFunc

→ (∀ (n m : nat) (l : m < n),

P n (projFunc n m l))

→ (∀ (n m : nat) (g : PrimRecs n m),

P0 n m g

→ ∀ h : PrimRec m,

P m h → P n (PRcomp h g))

→ (∀ (n : nat) (g : PrimRec n),

P n g

→ ∀ h : PrimRec (S (S n)),

P (S (S n)) h

→ P (S n) (PRrec g h))

→ (∀ n : nat, P0 n 0 (PRnil n))

→ (∀ (n m : nat) (p : PrimRec n),

P n p

→ ∀ p0 : PrimRecs n m,

P0 n m p0

→ P0 n (S m) (p :: p0)%pr)

→ ∀ (n : nat) (p : PrimRec n),

P n p

Please note that, in order to prove a property shared by any primitive re-
cursive function of, say, arity 2, this induction scheme leads you to consider an
extension of the considered property to primitive recursive function of any arity.

Thus the lemma we will have to prove is the following one:

For any n, and any primitive recursive function f of arity n, there ex-
ists some natural number q such that the following inequality holds:

∀x1, . . . , xn, f(x1, . . . , xn) ≤ Ack(q,max(x1, . . . , xn))

But dots don’t belong to Gallina’s syntax! So, we may use Coq’s vectors for
denoting arbitrary tuples.

First, we extend max to vectors of natural numbers (using the notations of
module VectorNotations and some more definitions from Prelude.MoreVectors).
So, (t A n) is the type of vectors of n elements of type A, and the constants
cons, nil, map, etc., refer to vectors and not to lists. Likewise, the notation x::v
is an abbreviation for VectorDef.cons x _ v.

Fixpoint max_v {n:nat} (v: Vector.t nat n) : nat :=

match v with

| nil => 0

| cons x t => max x (max_v t)

end.

Lemma max_v_2 : forall x y, max_v (x::y::nil) = max x y.

../theories/html/hydras.Prelude.MoreVectors.html

224 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

Lemma max_v_lub : forall n (v: t nat n) y,

(Forall (fun x => x <= y) v) ->

max_v v <= y.

Lemma max_v_ge : forall n (v: t nat n) y,

In y v -> y <= max_v v.

We have also to convert any application (f x1 x2 . . . xn) into an application
of a function to a single argument: the vector of all the xi s. This is already
defined in Library Ackermann.primRec.

Fixpoint evalList (m : nat) (l : Vector.t nat m) {struct l} :

naryFunc m -> nat :=

match l in (Vector.t _ m) return (naryFunc m -> nat) with

| Vector.nil => fun x : naryFunc 0 => x

| Vector.cons a n l' =>

fun x : naryFunc (S n) => evalList n l' (x a)

end.

Indeed, (evalList m v f) is the application to the vector v of an uncurried
version of f . In LibraryMoreAck.AckNotPR, we introduce a lighter notation.

Notation "'v_apply' f v" := (evalList _ v f) (at level 10, f at level 9).

Check [4].

Example Ex2 : forall (f: naryFunc 2) x y,

v_apply f [x;y] = f x y.

Proof.

intros; now cbn.

Qed.

Example Ex4 : forall (f: naryFunc 4) x y z t,

v_apply f [x;y;z;t] = f x y z t.

Proof.

intros; now cbn.

Qed.

We are now able to translate in Gallina the notion of “majorization”:

(** ** Comparing an n-ary and a binary functions *)

Definition majorized {n} (f: naryFunc n) (A: naryFunc 2) :=

exists (q:nat),

forall (v: t nat n), v_apply f v <= A q (max_v v).

Definition majorizedPR {n} (x: PrimRec n) A :=

majorized (evalPrimRec n x) A.

(** For vectors of functions *)

../theories/html/hydras.Ackermann.primRec.html
../theories/html/hydras.MoreAck.AckNotPR.html

11.7. ACKERMANN FUNCTION IS NOT PRIMITIVE RECURSIVE 225

Definition majorizedS {n m} (fs : Vector.t (naryFunc n) m)

(A : naryFunc 2):=

exists N, forall (v: t nat n),

max_v (Vector.map (fun f => v_apply f v) fs) <= A N (max_v v).

Definition majorizedSPR {n m} (x : PrimRecs n m) :=

majorizedS (evalPrimRecs _ _ x).

Now, it remains to prove that any primitive function is majorized by Ack.
The three base cases are as follows:

Lemma majorSucc : majorizedPR succFunc Ack.

Lemma majorZero : majorizedPR zeroFunc Ack.

Lemma majorProjection (n m:nat)(H: m < n): majorizedPR (projFunc n m H) Ack.

The remaining cases are proved within the main mutual induction.

Lemma majorAnyPR: forall n (x: PrimRec n), majorizedPR x Ack.

Proof.

intros n x; induction x using PrimRec_PrimRecs_ind with

(P0 := fun n m y => majorizedSPR y Ack).

- apply majorSucc.

- apply majorZero.

- apply majorProjection.

- destruct IHx, IHx0; red; exists (2 + Nat.max x0 x1).

n, m: nat

g: PrimRecs n m

x: PrimRec m

x0: nat

H: forall v : t nat n,

max_v

(map (fun f : naryFunc n => v_apply f v)

(PRevalN g)) <= Ack x0 (max_v v)

x1: nat

H0: forall v : t nat m,

v_apply (PReval x) v <= Ack x1 (max_v v)

forall v : t nat n,

v_apply (PReval (PRNotations.PRcomp x g)) v <=

Ack (2 + Nat.max x0 x1) (max_v v)

- destruct IHx1 as [r Hg]; destruct IHx2 as [s Hh].

226 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

n: nat

x1: PrimRec n

x2: PrimRec (S (S n))

r: nat

Hg: forall v : t nat n,

v_apply (PReval x1) v <= Ack r (max_v v)

s: nat

Hh: forall v : t nat (S (S n)),

v_apply (PReval x2) v <= Ack s (max_v v)

majorizedPR (PRNotations.PRrec x1 x2) Ack

The last two goals deal with vectors of functions.

-

n: nat

majorizedSPR (PRnil n) Ack

-

n, m: nat

x: PrimRec n

p: PrimRecs n m

IHx: majorizedPR x Ack

IHx0: majorizedSPR p Ack

majorizedSPR (PRcons n m x p) Ack

11.7.1 Looking for a contradiction
The following lemma is just a specialization of majorAnyPR to binary functions
(forgetting vectors, coming back to usual notations).

Lemma majorPR2 (f: naryFunc 2)(Hf : isPR 2 f)

: exists (n:nat), forall x y, f x y <= Ack n (max x y).

We prove also a strict version of this lemma, thanks to the following property
(proved in Library MoreAck.Ack).

Lemma Ack_strict_mono_l : forall n m p, n < m ->

Ack n p.+1 < Ack m p.+1.

From MoreAck.AckNotPR.

Lemma majorPR2_strict (f: naryFunc 2)(Hf : isPR 2 f):

exists n:nat,

forall x y, 2 <= x -> 2 <= y -> f x y < Ack n (max x y).

If the Ackermann function were primitive recursive, then there would exist
some natural number n, such that, for all x and y, the inequality Ackx y ≤
Ackn (maxx y) holds. Thus, our impossibility proof is just a sequence of easy
small steps.

../theories/html/hydras.MoreAck.Ack.html
../theories/html/hydras.MoreAck.AckNotPR.html

11.7. ACKERMANN FUNCTION IS NOT PRIMITIVE RECURSIVE 227

Remark 11.5 In the following snippet, some versions of Alectryon’s Latex gen-
erator print the local definition of x (as the maximum of 2 and m) as a simple
declaration x: nat. Thus the proof script is correct, but the three last sub-goals
are not correctly displayed, since they do not show how the inequalities 2 ≤ x
and m ≤ x could be inferred by lia.

A correct goal display can be obtained with this fork.

Section Impossibility_Proof.

Context (HAck : isPR 2 Ack).

Lemma Ack_not_PR : False.

Proof.

destruct (majorPR2_strict Ack HAck) as [m Hm].

HAck: isPR 2 Ack

m: nat

Hm: forall x y : nat,

2 <= x ->

2 <= y -> Ack x y < Ack m (Init.Nat.max x y)

False

set (x := Nat.max 2 m).

HAck: isPR 2 Ack

m: nat

Hm: forall x y : nat,

2 <= x ->

2 <= y -> Ack x y < Ack m (Init.Nat.max x y)

x: nat

False

specialize (Hm x x); rewrite Nat.max_idempotent in Hm.

HAck: isPR 2 Ack

m: nat

x: nat

Hm: 2 <= x -> 2 <= x -> Ack x x < Ack m x

False

assert (H0: Ack m x <= Ack x x) by (apply Ack_mono_l; lia).

HAck: isPR 2 Ack

m: nat

x: nat

Hm: 2 <= x -> 2 <= x -> Ack x x < Ack m x

H0: Ack m x <= Ack x x

False

lia.

Qed.

End Impossibility_Proof.

Remark 11.6 It is easy to prove that any unary function which dominates (fun

https://github.com/Casteran/alectryonFix

228 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

n => Ack n n) fails to be primitive recursive. To this end, we use an instance of
majorAnyPR dealing with unary functions.

From MoreAck.AckNotPR.

Lemma majorPR1 (f: naryFunc 1)(Hf : isPR 1 f)

: exists (n:nat), forall x, f x <= Ack n x.

Then, we write a short proof by contradiction, using a diagonalized version
of Ackermann function.

Section dom_AckNotPR.

Variable f : nat -> nat.

Hypothesis Hf : dominates f (fun n => Ack n n).

Lemma dom_AckNotPR: isPR 1 f -> False.

Proof.

intros H; destruct Hf as [n Hn].

destruct (majorPR1 _ H) as [m Hm].

pose (x := Nat.max n m).

specialize (Hn x (Nat.le_max_l n m)); (* for 8.13.dev's lia *)

cbn in Hn; specialize (Hm x).

assert (Ack m x <= Ack x x) by (apply Ack_mono_l; subst; lia).

lia.

Qed.

End dom_AckNotPR.

Remark 11.7 It may be interesting to compare the following statements:

• Ackermann function is not primitive recursive.

• For any n, the function Ack n _ is primitive recursive (see 11.6.1.1 on
page 221).

11.7.2 Related work
This proof is very close to the 1993 proof by Nora Szasz with the Alf proof
assistant [Sza93]. This proof has also been adapted by Lawrence C. Paulson to
Isabelle/HOL [PAU21].

11.8 The length of standard hydra battles
The module Hydra_Theorems contains a proof that the function which com-
putes the length of standard hydra battles is not primitive recursive. More
precisely, we consider, for a given hydra h = ι(α), the length of a standard
battle which starts with the replication factor k (see Sect 6.2.4.2 on page 129).

This proof is a little more complex than the preceding one.

../theories/html/hydras.MoreAck.AckNotPR.html
../theories/html/hydras.Hydra.Hydra_Theorems.html

11.8. THE LENGTH OF STANDARD HYDRA BATTLES 229

11.8.1 Definitions
The function we consider is defined and proven correct in Module Hydra.Bat-
tle_length.

Definition l_std alpha k := (L_ alpha (S k) - k)%nat.

Lemma l_std_ok : forall alpha : E0,

alpha <> E0zero ->

forall k : nat,

1 <= k -> battle_length standard k (iota (cnf alpha))

(l_std alpha k).

11.8.2 Proof steps
Now, let us assume that the function l_std is primitive recursive.

From Hydra.Hydra_Theorems.

Section battle_length_notPR.

Context (H: forall alpha, isPR 1 (l_std alpha)).

Let us consider the hydra represented by the ordinal ωω.

Let alpha := E0_phi0 E0_omega.

Let h := iota (cnf alpha).

In order to get rid of the subtraction in the definition of l_std, we work with
a helper function.

Let m k := L_ alpha (S k).

Remark m_eqn : forall k, m k = (l_std alpha k + k)%nat.

Under the hypothesis H, m is also primitive recursive.

#[local] Instance mIsPR : isPR 1 m.

11.8.2.1 Comparison between F and H ′

In Epsilon0.F_alpha, we prove a relation between the F and H ′ functionals.
For any α and k > 0, H ′

ωα(k) ≥ Fα(k).

Lemma H'_F alpha : forall n, F_ alpha (S n) <= H'_ (E0_phi0 alpha) (S n).

Proof.

pattern alpha; apply well_founded_induction with E0lt.

Our proof of this lemma is not trivial at all, it uses some properties of the
Ketonen-Solovay’s toolkit. We advise the reader to explore this proof, with the
help of an IDE or software like Alectryon.

../theories/html/hydras.Hydra.Battle_length.html
../theories/html/hydras.Hydra.Battle_length.html
../theories/html/hydras.Hydra.Hydra_Theorems.html
../theories/html/hydras.Epsilon0.F_alpha.html

230 CHAPTER 11. PRIMITIVE RECURSIVE FUNCTIONS

11.8.2.2 End of the proof

We finish the proof by comparing several fast growing functions.
From Epsilon0.L_alpha

Theorem H'_L_ alpha :

forall i:nat, (H'_ alpha i <= L_ alpha (S i))%nat.

From Epsilon0.F_omega
Lemma F_vs_Ack n : 2 <= n -> Ack n n <= F_ E0_omega n.

By transitivity, we get the inequality Fω(k + 1) ≤ m(k + 1), for any k.

Remark m_ge_F_omega k: F_ E0_omega (S k) <= m (S k).

We finish the proof by noting that the function m (composed with S) domi-
nates the Ackermann function, which leads to a contradiction.

Remark m_dominates_Ack :

dominates (fun n => S (m n)) (fun n => Ack.Ack n n).

Lemma SmNotPR : isPR 1 (fun n => S (m n)) -> False.

Theorem LNotPR : False.

Proof.

apply SmNotPR, compose1_1IsPR.

- apply mIsPR.

- apply succIsPR.

Qed.

End battle_length_notPR.

Check l_std_ok.

l_std_ok

: forall alpha : E0,

alpha <> E0zero ->

forall k : nat,

1 <= k ->

battle_length standard k (iota (cnf alpha))

(l_std alpha k)

Check LNotPR.

LNotPR

: (forall alpha : E0, isPR 1 (l_std alpha)) ->

False

Search L_ F_.

m_ge_F_omega:

forall k : nat,

F_ E0_omega (S k) <=

(fun k0 : nat => L_ (E0_phi0 E0_omega) (S k0)) (S k)

../theories/html/hydras.Epsilon0.L_alpha.html
../theories/html/hydras.Epsilon0.F_omega.html

Chapter 12

First Order Logic (in
construction)

12.1 Introduction
This chapter is devoted to the presentation of data structures for representing
terms and first order formulas over a ranked alphabet, and the basic functions
and predicates over these types, more precisely:

• Abstract syntax of terms and formulas over a ranked alphabet composed
of function and relation symbols.

• Induction principles over terms and formulas.

• Definition and main properties of substitution of terms to variables.

Although all the following constructions come directly from Russel O’Con-
nor’s work [O’C05a], we introduced minor (mainly syntactic) changes to take
into account recent changes in Coq (new constructions, tactics, notations, etc.).

12.2 Data types

12.2.1 Languages
A language is a structure composed of relation and function symbols, each sym-
bol is given an arity (number of arguments) 1.

From Ackermann.fol

Record Language : Type := language

{ Relations : Set;

Functions : Set;

arityR : Relations -> nat;

arityF : Functions -> nat}.

1As suggested by Russel O’Connor in [O’C05b], we consider two arity functions instead of
a single function defined on the sum type Relations + Functions.

231

../theories/html/hydras.Ackermann.fol.html

232 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

12.2.1.1 Example: L, a toy language

In order to show a few simple examples of statements and proofs, we define a
small language with very few symbols: two constant symbols: a and b, three
function symbols f , g and h (of respective arity 1, 1 and 2), three propositional
symbols A, B and C, two one-place predicates symbols P and Q, and a binary
relational symbol R.

From MoreAck.FolExamples.

Module Toy.

Inductive Rel: Set := A_ | B_ | C_ | P_ | Q_ | R_.

Inductive Fun : Set := a_ | b_ | f_ | g_ | h_.

Definition arityR (x : Rel): nat :=

match x with

P_ | Q_ => 1 | R_ => 2 | _ => 0

end.

Definition arityF (x : Fun): nat :=

match x with f_ | g_ => 1 | h_ => 2 | _ => 0 end.

Definition L := language Rel Fun arityR arityF.

Remark 12.1 The constructors of types Rel and Fun are suffixed by an under-
score, in order to reserve the names a, f, h, R, etc. to the functions which build
terms and formulas (please look at Sect 12.2.2.1 and 12.2.4).

12.2.2 Terms
Given a language L, we define the type of terms and n-tuples of terms over L.

Section First_Order_Logic.

Variable L : Language.

Inductive Term : Set :=

| var : nat -> Term

| apply : forall f : Functions L, Terms (arityF L f) -> Term

with Terms : nat -> Set :=

| Tnil : Terms 0

| Tcons : forall n : nat, Term -> Terms n -> Terms (S n).

Remark 12.2 This representation of terms uses mutually inductive data-types
instead of lists or vectors of terms. Please see also Remark 2.1 on page 25.

Remark 12.3 (Variables) In O’Connor’s formalization of first-order logic,
variables are just natural numbers, and the conversion from nat to Term L is
the constructor (@var L). Although other choices may be considered : PHOAS,
de Bruijn indices, etc, we still the data structures of [O’C05a], in order not to
break long proof scripts which use this representation (please look at Section 2
of [O’C05b] for a related discussion).

../theories/html/hydras.MoreAck.FolExamples.html

12.2. DATA TYPES 233

12.2.2.1 Examples

Let us build a few Gallina terms over our toy language, respectively correspond-
ing to the terms a, f(a), h(f(a), a), and h(f(v0), g(v1)).

First, in order to make terms on L more readable, we introduce a few ab-
breviations.

From MoreAck.FolExamples.

Notation a := (apply L a_ Tnil).

Notation b := (apply L b_ Tnil).

Notation f t := (apply L f_ (Tcons t Tnil)).

Notation g t := (apply L g_ (Tcons t Tnil)).

Notation h t1 t2 := (apply L h_ (Tcons t1 (Tcons t2 Tnil))).

Example t0 : Term L := a.

Example t1 : Term L := f t0.

Example t2 : Term L := h t1 t0.

Example t3 : Term L := h (f (var 0)) (g (var 1)).

The following “term” t4 is not well formed, since the arity of h is not re-
spected 2.

Fail Example t4 : Term L := h t0.

The command has indeed failed with message:

Abbreviation is not applied enough.

12.2.2.2 Other Languages

To do 12.1 Link to the chapter which presents LNT and LNN.

12.2.3 First-order formulas
The type of first order formulas over L is defined in Ackermann.fol as an in-
ductive data type, with a limited set of basic constructions: term equalities
t1 = t2, atomic propositions R t1 . . . tn, where R is a relation symbol of arity
n, implications A→ B, negations ∼ A, and universal quantifications ∀ i, A.

From Ackermann.fol

Inductive Formula : Set :=

| equal : Term -> Term -> Formula

| atomic : forall r : Relations L, Terms (arityR L r) -> Formula

| impH : Formula -> Formula -> Formula

| notH : Formula -> Formula

| forallH : nat -> Formula -> Formula.

2Strictly speaking, it’s not a (well typed) term!

../theories/html/hydras.MoreAck.FolExamples.html
../theories/html/hydras.Ackermann.fol.html
../theories/html/hydras.Ackermann.fol.html

234 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

Remark 12.4 In [O’C05a], no constructors of type (Formula L) are associ-
ated with disjunction, conjonction, logical equivalence and existential quantifier.
These constructs are formalized through definitions in terms of impH, notH and
forallH 3.

Definition orH (A B : Formula) := impH (notH A) B.

Definition andH (A B : Formula) := notH (orH (notH A) (notH B)).

Definition iffH (A B : Formula) := andH (impH A B) (impH B A).

Definition existH (x : nat) (A : Formula) := notH (forallH x (notH A)).

Definition ifThenElseH (A B C : Formula) :=

andH (impH A B) (impH (notH A) C).

This convention allows the user to reduce to 5 (instead of 10) the number
of cases in ”match F with …” terms. On the other hand, some computation may
expand a connective like ∨ or ∧, or an existential quantification into a “basic”
formula (see Sect.12.3.1 on page 236).

12.2.4 Examples
Let us give a few examples of first-order formulas over L.

F1 R a b

F2 ∀v0 v1, R v0 v1→R v1 v0

F3 ∀v0, v0 = a ∨ ∃ v1, v0 = f(v1)

F4 (∀v1, v0 = v1) ∨ ∃ v0 v1, v0 6= v1

F5 v0 = a ∨ v0 = f(v1)

F6 ∀v0, ∃v1, v0 = f(v1) ∧ v0 6= v1

Let us now define these formulas as terms of type (Formula L).
First, we define abbreviations for atomic formulas over L.

From MoreAck.FolExamples

Notation A := (atomic L A_ Tnil).

Notation B := (atomic L B_ Tnil).

Notation C := (atomic L C_ Tnil).

Notation P t := (atomic L P_ (Tcons t Tnil)).

Notation Q t := (atomic L Q_ (Tcons t Tnil)).

Notation R t1 t2 := (@atomic L R_ (Tcons t1 (Tcons t2 Tnil))).

Example F1 : Formula L := R a b.

Example F2 : Formula L :=

forallH 0 (forallH 1

(impH (R (var 0) (var 1)) (R (var 1) (var 0)))).

Example F3 : Formula L :=

3Please keep in mind that we are considering a classical logic.

../theories/html/hydras.MoreAck.FolExamples.html

12.3. A NOTATION SCOPE FOR FIRST-ORDER TERMS AND FORMULAS235

forallH 0 (orH (equal (var 0) a)

(existH 1 (equal (var 0) (f (var 1))))).

Example F4: Formula L :=

orH (forallH 1 (equal (var 0) (var 1)))

(existH 0 (existH 1 (notH (equal (var 0) (var 1))))).

Example F5: Formula L := (v#0 = a \/ v#0 = f v#1)%fol.

Example F6: Formula L:= (allH 0, exH 1, v#0 = f v#1 /\ v#0 <> v#1)%fol.

12.2.4.1 Bound variables

In [O’C05a], there is no De Bruijn encoding of bound variables (see also [O’C05b]).
For instance, the term (var 0) occurs both freely and inside the scope of a

quantifier in the formula F4 on the preceding page.
The following example shows two formulas which share the same structure,

are logically equivalent, but are not Leibniz equal.
From MoreAck.FolExamples

Goal forallH 1 (equal (var 1) a) <> forallH 0 (equal (var 0) a).

discriminate.

Qed.

To do 12.2 Link to the lemmas which attest the equivalence of these formulas
(properties of substitution, logical equivalence).

Project 12.1 Define a [P]HOAS representation for FOL terms and formulas.
Could we avoid to break some proof scripts?

12.3 A notation scope for first-order terms and
formulas

We use Coq’s Notation features to print and parse terms and formulas in a more
readable form. To this purpose, we build fol_scope, a notation scope where the
main connectives and quantifiers get a syntax close to Coq’s. Additionnally, a
term of the form (@var _ i) is just printed and parsed v#i.

(** ** The [fol_scope] notation scope *)

Module FolNotations.

Declare Scope fol_scope.

Delimit Scope fol_scope with fol.

Infix "=" := (equal _): fol_scope.

Infix "\/" := (orH): fol_scope.

Infix "/\" := (andH):fol_scope.

Infix "->" := (impH): fol_scope.

../theories/html/hydras.MoreAck.FolExamples.html

236 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

Notation "~ A" := (@notH _ A): fol_scope.

Notation "A <-> B" := (@iffH _ A B): fol_scope.

Notation "'v#' i" := (var i) (at level 3, format "'v#' i", i at level 0) : fol_scope.

Notation "'exH' x .. y , p" := (existH x .. (existH y p) ..)

(x at level 0, y at level 0, at level 200, right associativity) : fol_scope.

Notation "'allH' x .. y , p" := (forallH x .. (forallH y p) ..)

(x at level 0, y at level 0, at level 200, right associativity) : fol_scope.

Notation "t = u" := (@equal _ t u): fol_scope.

Notation "t <> u" := (~ t = u)%fol : fol_scope.

The %fol delimiter allows the user to distinguish FOL connectives from their
Coq equivalent. We discourage the reader from opening fol_scope and similar
scopes : nn_scope, nt_scope, which would make disappear the %fol suffix from
the first-order formulas.

From Ackermann.fol

Print F1.

F1 = R a b

: Formula L

Print F2.

F2 =

(allH 0 1, R v#0 v#1 -> R v#1 v#0)%fol

: Formula L

Print F3.

F3 =

(allH 0, v#0 = a \/ (exH 1, v#0 = f v#1))%fol

: Formula L

12.3.1 The issue with derived constructions
The connectives and quantifiers ∨, ∧, ∃, etc. may raise an issue when printing
computed formulas. For instance, a formula like F ∧ G could be transformed
into ∼ (∼ F∨ ∼ G), and even into ∼ (∼∼ F→ ∼ B), which would cause serious
problems of readability.

In such a case, we propose to print such a formula as F ∧′ G, to make it
syntactically distinct but very similar to F ∧G.

Reserved Notation "x '\/'' y" (at level 85, right associativity).

Reserved Notation "x '/\'' y" (at level 80, right associativity).

Reserved Notation "x '<->'' y" (at level 95, no associativity).

Reserved Notation "x '<->''' y" (at level 95, no associativity).

Notation "x \/' y" := (~ x -> y)%fol : fol_scope.

Notation "x /\' y" := (~ (~ x \/' ~ y))%fol : fol_scope.

Notation "x <->'' y" := ((x -> y) /\ (y -> x))%fol: fol_scope.

../theories/html/hydras.Ackermann.fol.html

12.3. A NOTATION SCOPE FOR FIRST-ORDER TERMS AND FORMULAS237

Notation "x <->' y" := (~ (~ (x -> y) \/' ~ (y -> x)))%fol : fol_scope.

Notation exH' v A := (~ (forallH v (~ A)))%fol.

End FolNotations.

The following examples show how the primed connectors and quantifiers
behave with respect to convertibility and input/output.

Section PrimedSymbols.

Compute (F3 /\ F1)%fol.

= ((allH 0, v#0 = a \/' exH' 1 (v#0 = f v#1)) /\'

R a b)%fol

: Formula L

Goal (F3 /\ F1)%fol = (~(~ ~ F3 -> ~ F1))%fol.

(F3 /\ F1)%fol = (F3 /\' F1)%fol

reflexivity.

Qed.

Print F6.

F6 =

(allH 0, exH 1, v#0 = f v#1 /\ v#0 <> v#1)%fol

: Formula L

Compute F6.

= (allH 0, exH' 1 (v#0 = f v#1 /\' v#0 <> v#1))%fol

: Formula L

#[local] Unset Printing Notations.

Print F6.

F6 =

forallH 0

(existH 1

(andH

(equal (var 0)

(apply L f_ (Tcons (var 1) Tnil)))

(notH (equal (var 0) (var 1)))))

: Formula L

Compute F6.

238 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

= forallH 0

(notH

(forallH 1

(notH

(notH

(impH

(notH

(notH

(equal (var 0)

(apply L f_

(Tcons (var 1)

Tnil)))))

(notH

(notH

(equal (var 0) (var 1)))))))))

: Formula L

End PrimedSymbols.

Remark 12.5 In some situations (like in the proof of PrfEx4 12.5.1.7 on page 253)
the user may be puzzled when a formula [s]he typed explicitely ∼ A ->∼ B will
be printed A \/' ∼ B. We will try to fix this issue.

12.4 Computing and reasoning on first-order for-
mulas

12.4.1 Structural recursion on formulas

Structural induction/recursion principles are generated from Term, Terms and
Formula’s definition, for instance:

Scheme Term_Terms_rec_full := Induction for Term Sort Set

with Terms_Term_rec_full := Induction for Terms Sort Set.

About Term_Terms_rec_full.

12.4. COMPUTING AND REASONING ON FIRST-ORDER FORMULAS239

Term_Terms_rec_full :

forall (L : Language) (P : Term L -> Set)

(P0 : forall n : nat, Terms L n -> Set),

(forall n : nat, P (v#n)%fol) ->

(forall (f0 : Functions L) (t : Terms L (arityF L f0)),

P0 (arityF L f0) t -> P (apply L f0 t)) ->

P0 0 Tnil ->

(forall (n : nat) (t : Term L),

P t ->

forall t0 : Terms L n,

P0 n t0 -> P0 (S n) (Tcons t t0)) ->

forall t : Term L, P t

Term_Terms_rec_full is not universe polymorphic

Arguments Term_Terms_rec_full L

(P P0 f f)%function_scope f f%function_scope t

(where some original arguments have been renamed)

Term_Terms_rec_full is transparent

Expands to: Constant

hydras.Ackermann.fol.Term_Terms_rec_full

About Formula_rect.

Formula_rect :

forall (L : Language) (P : Formula L -> Type),

(forall t t0 : Term L, P (t = t0)%fol) ->

(forall (r : Relations L) (t : Terms L (arityR L r)),

P (atomic L r t)) ->

(forall f1 : Formula L,

P f1 ->

forall f2 : Formula L, P f2 -> P (f1 -> f2)%fol) ->

(forall f2 : Formula L, P f2 -> P (~ f2)%fol) ->

(forall (n : nat) (f3 : Formula L),

P f3 -> P (allH n, f3)%fol) ->

forall f4 : Formula L, P f4

Formula_rect is not universe polymorphic

Arguments Formula_rect L (P f f f f f)%function_scope

f

Formula_rect is transparent

Expands to: Constant hydras.Ackermann.fol.Formula_rect

12.4.1.1 Free variables

The functions freeVarT [resp. freeVarTs, and freeVarF] compute the multiset
(as a list with possible repetitions) of the free occurrences of variables in a term
[resp. a vector of terms, a formula].

Fixpoint freeVarT (s : fol.Term L) : list nat :=

match s with

| var v => v :: nil

| apply f ts => freeVarTs (arityF L f) ts

end

with freeVarTs (n : nat) (ss : fol.Terms L n) {struct ss} : list nat :=

240 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

match ss with

| Tnil => nil (A:=nat)

| Tcons m t ts => freeVarT t ++ freeVarTs m ts

end.

Concerning formulas, the treatement of binding is realized whith the help of
the List library function remove.

Fixpoint freeVarF (A : fol.Formula L) : list nat :=

match A with

| equal t s => freeVarT t ++ freeVarT s

| atomic r ts => freeVarTs _ ts

| impH A B => freeVarF A ++ freeVarF B

| notH A => freeVarF A

| forallH v A => remove eq_nat_dec v (freeVarF A)

end.

Compute freeVarF (allH 0, v#0 = v#1)%fol.

= [1]

: list nat

Compute freeVarF (allH 0, v#0 = v#0)%fol.

= []

: list nat

Compute freeVarF (v#0 = v#1 \/ allH 0, v#0 = v#1)%fol.

= [0; 1; 1]

: list nat

Remark 12.6 Note that freeVarF is defined by cases over the basic connectives.
Formulas with contain iffH or ifThenElseH are expanded before the application
of freevarF, and the list returned by freeVarF may contain redundancies.

If we want to get the set of variables wich occur freely in a formula F , we
may use the function List.nodup.

Compute freeVarF (v#0 = v#1 <-> v#1 = v#0)%fol.

= [0; 1; 1; 0; 1; 0; 0; 1]

: list nat

Compute nodup Nat.eq_dec (freeVarF (v#0 = v#1 <-> v#1 = v#0)%fol).

= [0; 1]

: list nat

12.4.1.2 Closing a formula

Function freeVarF is used in the function close, which universally quantifies all
the free variables of a formula.
From Ackermann.folProp

(* added by PC *)

Definition closed (a : fol.Formula L):=

forall v: nat, ~ In v (freeVarF a).

../theories/html/hydras.Ackermann.folProp.html

12.4. COMPUTING AND REASONING ON FIRST-ORDER FORMULAS241

Fixpoint closeList (l: list nat)(a : fol.Formula L) :=

match l with

nil => a

| cons v l => f[∀ v, {closeList l a}]f

end.

Definition close (x : fol.Formula L) : fol.Formula L :=

closeList (nodup eq_nat_dec (freeVarF x)) x.

From MoreAck.FolExamples

Compute close L (v#0 = a \/ v#0 = f v#1)%fol.

= (allH 0 1, v#0 = a \/' v#0 = f v#1)%fol

: Formula L

Remark 12.7 The function close applies freeVarF and List.nodup in order to
add a sequence of universal quantifications (allH i1 . . . ik), in an order deter-
mined by the actual implementation of these functions. It may be interesting
to check whether the proof of properties of close depend or not from this im-
plementation.

12.4.2 Decidability of equality
Let L be a language, and let us assume that equality of function and relation
symbols of L are decidable. Under this assumption, equality of terms and
formulas over L is decidable too.

Because of dependent types, the proofs are quite long and technical. The
reader may consult them in Ackermann.fol

Section Formula_Decidability.

Definition language_decidable :=

((forall x y : Functions L, {x = y} + {x <> y}) *

(forall x y : Relations L, {x = y} + {x <> y}))%type.

Hypothesis language_eqdec : language_decidable.

Lemma term_eqdec : forall x y : Term, {x = y} + {x <> y}.

Lemma terms_eqdec n (x y : Terms n): {x = y} + {x <> y}.

Lemma formula_eqdec : forall x y : Formula, {x = y} + {x <> y}.

End Formula_Decidability.

Remark 12.8 Please note that term_dec, terms_dec and formula_dec are opaque.
The function formula_dec is mainly used in Ackermann.PA, in order to check

whether a given formula belongs to the axioms of Peano arithmetic.

To do 12.3 Look for the use of open (in codePA)

../theories/html/hydras.MoreAck.FolExamples.html
../theories/html/hydras.Ackermann.fol.html
../theories/html/hydras.Ackermann.PA.html

242 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

12.4.3 Variables and substitutions
The substitution of a term to the free occurrences of a given variable v is at the
heart of the implementation of universal quantifier elimination.

Since free and bound occurrences of a variable i are represented the same
way, much care should be taken in programming the substitution of a term to
a variable in order to avoid variable capture.

Substitution of a term t to all the occurrences of a variable x in a term or
a vector of terms is easy to define as a pair of mutually structurally recursive
functions.

Fixpoint substT (s : fol.Term L) (x : nat)

(t : fol.Term L) {struct s} : fol.Term L :=

match s with

| var v =>

match eq_nat_dec x v with

| left _ => t

| right _ => var v

end

| apply f ts => apply f (substTs _ ts x t)

end

with substTs (n : nat) (ss : fol.Terms L n)

(x : nat) (t : fol.Term L) {struct ss} : fol.Terms L n :=

match ss in (fol.Terms _ n0) return (fol.Terms L n0) with

| Tnil => Tnil

| Tcons m s ts =>

Tcons (substT s x t) (substTs m ts x t)

end.

Compute substT (h v#1 (h (f v#1) (f v#2)))%fol 1 (h a b)%fol.

= h (h a b) (h (f (h a b)) (f (v#2)%fol))

: Term L

Concerning formulas, it could be tempting to define substitution the same
way.

Module BadSubst.

Fixpoint substF L (F : Formula L) v (t: Term L) :=

match F with

| equal t1 t2 => equal (substT t1 v t) (substT t2 v t)

| atomic r s => atomic L r (substTs s v t)

| impH G H => impH (substF L G v t) (substF L H v t)

| notH G => notH (substF L G v t)

| forallH w G => if Nat.eq_dec w v then F else forallH w (substF L G v t)

end.

End BadSubst.

Let us consider for instance the formula F = ∀ v1, ∃ v2, v1 6= f(v2) (satis-
fiable if we take for instance f to be interpreted as the successor function on
natural numbers).

12.4. COMPUTING AND REASONING ON FIRST-ORDER FORMULAS243

If we eliminate the universal quantifier by substituting in the sub-formula
F1 = ∃ v2, v1 6= f(v2) the free occurrences of v1 with f(v2), our naive imple-
mentation of substF returns the absurd proposition ∃ v2, f(v2) 6= f(v2). We
say that the free occurrence of v2 in the term f(v2) has been captured by the
binding ∃ v2,

Section BadExample.

Let F := (allH 1, exH 2, v#1 <> f v#2)%fol.

Let F1: Formula L := (exH 2, v#1 <> f v#2)%fol.

Compute BadSubst.substF L F1 1 (f v#2)%fol.

= exH' 2 (f v#2 <> f v#2)

: Formula L

End BadExample.

In this example, we could obtain a correct result, if

1. We consider a fresh variable, i.e. different from v1 and v2, say for instance
v3,

2. we substitute v3 to v2 in F1 which results in F2 = ∃ v3, v1 6= f(v3)

3. we substitute the term f(v2) to v1 in F2, which gives us ∃ v3, f(v2) 6=
f(v3).

The notion of fresh variable is implemented through a function newvar (l:

list nat) : nat which returns a number which doesn’t belong to l.
But the following attempt fails, because the renaming of a variable in a

sub-formula of a formula F is not structurally smaller than F .

Fail Fixpoint substF L (F : Formula L) v (t: Term L) :=

match F with

| equal t1 t2 => equal (substT L t1 v t) (substT L t2 v t)

| atomic r s => atomic L r (substTs L (arityR L r) s v t)

| impH G H => impH (substF L G v t) (substF L H v t)

| notH G => notH (substF L G v t)

| forallH w G => if Nat.eq_dec w v then F else

let nv := newVar (w :: freeVarT L t ++ freeVarF L G)

in let H := (substF L G w (var nv))

in forallH nv (substF L H v t)

end.

244 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

The command has indeed failed with message:

In environment

substF : forall (L : Language) (F : Formula L)

(v : ?T) (t : Term L), ?T0@{F:=F; f0:=F}

L : Language

F : Formula L

v : ?T

t : Term L

t1 : Term L

t2 : Term L

The term "L" has type "Language"

while it is expected to have type "Term ?L0".

Fortunately, Coq allows us to define functions by well-founded recursion, and
in particular with the help of a measure mapping every formula to an already
known well-founded type.

12.4.3.1 Depth of a formula

The function depth computes the depth of any formula, i.e the height of the
sub-tree made by erasing all nodes but those nodes labelled with allH, impH and
notH.

Fixpoint depth (A : Formula) : nat :=

match A with

| equal _ _ => 0

| atomic _ _ => 0

| impH A B => S (Nat.max (depth A) (depth B))

| notH A => S (depth A)

| forallH _ A => S (depth A)

end.

Definition lt_depth (A B : Formula) : Prop := depth A < depth B.

Remark 12.9 The depth of a formula takes into account its abstract syntax
tree with respect to the base connective and quantifiers : →, ∼ and ∀. Formulas
which contain ∨, ∧, ∃, etc. are translated into basic formulas before the compu-
tation of their depth. In the example below, the conjunction is translated into
a bigger term than the disjunction.

Goal lt_depth L (v#0 = v#1 \/ exH 2, v#1 = f v#2)%fol

(v#0 = v#1 /\ exH 2, v#1 = f v#2)%fol.

red; simpl.

4 < 6

auto with arith.

Qed.

12.4.3.2 Induction on depth

Lemma fol.Formula_depth_rec is the basic induction principle based on depth.

12.4. COMPUTING AND REASONING ON FIRST-ORDER FORMULAS245

Formula_depth_rec :

forall (L : Language) (P : Formula L -> Set),

(forall a : Formula L,

(forall b : Formula L, lt_depth L b a -> P b) -> P a) ->

forall a : Formula L, P a

Formula_depth_rec is not universe polymorphic

Arguments Formula_depth_rec L (P rec)%function_scope a

Formula_depth_rec is transparent

Expands to: Constant

hydras.Ackermann.fol.Formula_depth_rec

L: Language

P: Formula L -> Prop

a: Formula L

Ha: forall b : Formula L, lt_depth L b a -> P b

P a

To do 12.4 Look for the principles which are really used in Ackermann or/and
Goedel libraries, and comment them. Maybe skip the helpers (unused in other
files)

The library Ackermann.fol contains several derived induction principles, ap-
plied throughout Ackermann and Goedel projects.

Let us for instance have a look at Formula_depth_ind2 which helps to prove
a goal (P a) by generating five sub-goals.

../theories/html/hydras.Ackermann.fol.html

246 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

L: Language

P: Formula L -> Prop

a: Formula L

forall t t0 : Term L, P (t = t0)%fol

L: Language

P: Formula L -> Prop

a: Formula L

forall (r : Relations L) (t : Terms L (arityR L r)),

P (atomic L r t)

L: Language

P: Formula L -> Prop

a: Formula L

forall f : Formula L,

P f -> forall f0 : Formula L, P f0 -> P (f -> f0)%fol

L: Language

P: Formula L -> Prop

a: Formula L

forall f : Formula L, P f -> P (~ f)%fol

L: Language

P: Formula L -> Prop

a: Formula L

forall (v : nat) (a : Formula L),

(forall b : Formula L,

lt_depth L b (allH v, a)%fol -> P b) ->

P (allH v, a)%fol

• Goals 1 to 4 correspond to usual proofs by structural induction (without
refering to depth).

• Goal 5 is associated with a universal quantification f = ∀ v, a. In this
case, we have to prove that P b holds for any formula b which has a depth
strictly less than f . Such a b may for instance be the result of replacing
the free occurrences of v in a with any term t.

To do 12.5 Make a link to an appropriate example.

12.4.4 A correct definition of substF
Substitution of a term to (free- occurrences of a variable in a formula is defined
in a section of Ackermann.folProp. The definition itself takes 200 lines of Coq
code, so we will only comment its structure.

Fortunately, the reader may skip a few complex definitions (often because of
dependent pattern matching), whose purpose is twofold:

• Ensure that the substitution in a formula F of a term t to a variable x
returns a formula of the same depth as F , which allows to define a function
by well-founded recursion on depth.

../theories/html/hydras.Ackermann.folProp.html

12.4. COMPUTING AND REASONING ON FIRST-ORDER FORMULAS247

Definition substituteFormulaHelp (f : fol.Formula L)

(v : nat) (s : fol.Term L) :

{y : fol.Formula L | depth L y = depth L f}.

Definition substF (f : fol.Formula L) (v : nat) (s : fol.Term L) :

fol.Formula L := proj1_sig (substituteFormulaHelp f v s).

• Prove a few equations which will be used in further proofs.

Lemma subFormulaEqual :

forall (t1 t2 : fol.Term L) (v : nat) (s : fol.Term L),

substF (t1 = t2)%fol v s =

(substT t1 v s = substT t2 v s)%fol.

Proof. reflexivity. Qed.

Lemma subFormulaRelation :

forall (r : Relations L) (ts : fol.Terms L (arityR L r))

(v : nat) (s : fol.Term L),

substF (atomic r ts) v s =

atomic r (substTs (arityR L r) ts v s).

Proof. reflexivity. Qed.

Lemma subFormulaImp :

forall (f1 f2 : fol.Formula L) (v : nat) (s : fol.Term L),

substF (f1 -> f2)%fol v s =

(substF f1 v s -> substF f2 v s)%fol.

Proof.

(* ... *)

Lemma subFormulaNot :

forall (f : fol.Formula L) (v : nat) (s : fol.Term L),

substF (~ f)%fol v s = (~ substF f v s)%fol.

Lemma subFormulaForall :

forall (f : fol.Formula L) (x v : nat) (s : fol.Term L),

let nv := newVar (v :: freeVarT s ++ freeVarF f) in

substF (allH x, f)%fol v s =

match eq_nat_dec x v with

| left _ => forallH x f

| right _ =>

match In_dec eq_nat_dec x (freeVarT s) with

| right _ => (allH x, substF f v s)%fol

| left _ => (allH nv, substF (substF f x (v# nv)) v s)%fol

end

end.

• Similar equations are also proved for derived connectors and quantifiers,
for instance:

248 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

Lemma subFormulaAnd :

forall (f1 f2 : fol.Formula L) (v : nat) (s : fol.Term L),

substF (f1 /\ f2)%fol v s =

(substF f1 v s /\ substF f2 v s)%fol.

Proof.

intros ? ? ? ?; unfold andH in |- *.

rewrite subFormulaNot, subFormulaOr;

now repeat rewrite subFormulaNot.

Qed.

Lemma subFormulaExist :

forall (f : fol.Formula L) (x v : nat) (s : fol.Term L),

let nv := newVar (v :: freeVarT s ++ freeVarF f) in

substF (existH x f) v s =

match eq_nat_dec x v with

| left _ => existH x f

| right _ =>

match In_dec eq_nat_dec x (freeVarT s) with

| right _ => existH x (substF f v s)

| left _ =>

existH nv (substF

(substF f x (var nv)) v s)

end

end.

Let us look at a few examples. Despite the complexity of its definitoin, the
function substF behaves well with respect with computations.

Let F : Formula L := (exH 2, v#1 <> f v#2)%fol.

Compute substF F 1 (f v#2)%fol.

= exH' 3 (f v#2 <> f v#3)

: Formula L

Compute substF (close L F -> F)%fol 1 (h v#2 v#3)%fol.

= ((allH 1, exH' 2 (v#1 <> f v#2)) ->

exH' 4 (h v#2 v#3 <> f v#4))%fol

: Formula L

Project 12.2 Is it possible to get a more readable definition of substF using
the Equations plug-in [SM19] ?

12.4.5 Multiple substitutions
The function subFormula defined in Ackermann.subAll allows to substitute a
term ti to ecah free occurrence of the variable vi in a formula F . The dependance
of t− i from vi is given through a function from nat to (Term L).

Check subAllFormula.

../theories/html/hydras.Ackermann.subAll.html

12.5. PROOFS 249

subAllFormula

: forall L : Language,

Formula L -> (nat -> Term L) -> Formula L

Compute subAllFormula L

(allH 2, P (h v#1 (h v#2 (h v#1 v#3))))%fol

(fun x => let phi := fix phi (n: nat) :=

match n with

| 0 => a%fol

| S p => (f (phi p))%fol

end

in phi x).

= (allH 4,

P (h (f a) (h v#4 (h (f a) (f (f (f a)))))))%fol

: Formula L

12.5 Proofs
12.5.1 Proof trees
Proof trees in first-order logic are the inhabitants of the Prf L inductive type,
defined in Ackermann.folProof and displayed in Figure 12.1 on the next page.

Please note that the following constructions are parametrized with an arbi-
trary language L, declared in the ProofH section.

Section ProofH.

Variable L : Language.

Let Formula := Formula L.

Let Formulas := Formulas L.

Let System := System L.

Let Term := Term L.

Let Terms := Terms L.

12.5.1.1 Prf’s type

The type Prf l F is the type of “proof trees of the formula F , where l is the
list of assumptions used in the proof, enumerated left-to-right (i.e. the fringe
of the proof tree)”.

We will also use (in the text) the notation l F for the type Prf l F .
In the rest of this section, we comment every one of Prf’s 14 constructors,

and give simple examples of their application.

12.5.1.2 Warning

We won’t respect the order in which Prf’s constructors of type folProof are
enumerated in folProof.v (see Figure 12.1). Instead, we preferred to present

../theories/html/hydras.Ackermann.folProof.html

250 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

Inductive Prf : Formulas -> Formula -> Set :=

| AXM : forall A : Formula, Prf [A] A

| MP :

forall (Hyp1 Hyp2 : Formulas) (A B : Formula),

Prf Hyp1 (A -> B)%fol -> Prf Hyp2 A -> Prf (Hyp1 ++ Hyp2) B

| GEN :

forall (Hyp : Formulas) (A : Formula) (v : nat),

~ In v (freeVarListFormula L Hyp) -> Prf Hyp A ->

Prf Hyp (allH v, A)%fol

| IMP1 : forall A B : Formula, Prf [] (A -> B -> A)%fol

| IMP2 :

forall A B C : Formula,

Prf [] ((A -> B -> C) -> (A -> B) -> A -> C)%fol

| CP :

forall A B : Formula,

Prf [] ((~ A -> ~ B) -> B -> A)%fol

| FA1 :

forall (A : Formula) (v : nat) (t : Term),

Prf [] ((allH v, A) -> substF A v t)%fol

| FA2 :

forall (A : Formula) (v : nat),

~ In v (freeVarF A) -> Prf [] (A -> allH v, A)%fol

| FA3 :

forall (A B : Formula) (v : nat),

Prf []

((allH v, A -> B) -> (allH v, A) -> allH v, B)%fol

| EQ1 : Prf [] (v#0 = v#0)%fol

| EQ2 : Prf [] (v#0 = v#1 -> v#1 = v#0)%fol

| EQ3 : Prf [] (v#0 = v#1 -> v#1 = v#2 -> v#0 = v#2)%fol

| EQ4 : forall R : Relations L, Prf [] (AxmEq4 R)

| EQ5 : forall f : Functions L, Prf [] (AxmEq5 f).

Figure 12.1: Definition of the type Prf of proof trees

12.5. PROOFS 251

these constructors in an order inspired by a sequence of simple examples. On
the other hand, we didn’t change this order in folProof.v, in order not to break
complex proofs by pattern-matching.

For more information on Hilbert proof system, you may consult https://en.
wikipedia.org/wiki/List_of_Hilbert_systems.

12.5.1.3 Notation

12.5.1.4 The axiom rule: AXM

Let A be a formula on L. The AXM rule builds a proof-tree of A which uses
exactly the singleton list [A].
From MoreAck.FolExamples

Example PrfEx1: Prf L [(A -> B -> C)%fol] (A -> B -> C)%fol.

Proof. constructor. Qed.

12.5.1.5 Modus Ponens: MP

Let A and B be two formulas on L, Axm1 and Axm2 two sequences of formulas.
If we have two proof trees of respective types Prf Axm1 A→B and Prf Axm2 B,
then we build a proof tree for B whose fringe is the concatenation of sAB and
sA.

The following proof script is a quite naive application of AXM and MP.

Lemma PrfEx2: Prf L [A -> B -> C; A; A -> B; A]%fol C.

Proof.

change (Prf L ([A -> B -> C; A] ++ [A -> B; A])%fol C); eapply MP.

- change [(A -> B -> C)%fol; A] with ([A -> B -> C] ++ [A])%fol;

eapply MP.

+ eapply AXM.

+ eapply AXM.

- change [(A -> B); A]%fol with ([A -> B] ++ [A])%fol; eapply MP.

+ eapply AXM.

+ eapply AXM.

Qed.

A→B→C
A→B→C

A
A

B→C

A→B
A→B

A
A

B
C

Figure 12.2: The proof tree of PrfEx2

Figure 12.2 shows the tree-like structure of PrfEx2. The list of used hypothe-
ses is the fringe of the tree. The unary nodes are applications of AXM and the
binary nodes are associated with MP.

We can make our proof script shorter, using existential variables.

https://en.wikipedia.org/wiki/List_of_Hilbert_systems
https://en.wikipedia.org/wiki/List_of_Hilbert_systems
../theories/html/hydras.MoreAck.FolExamples.html

252 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

Lemma MP' f g H1 H2 H: H = H1 ++ H2 -> Prf L H1 (f -> g)%fol ->

Prf L H2 f -> Prf L H g.

Proof.

intros; subst; eapply MP; eauto.

Qed.

(** Cuts the current list of hypotheses as (G++?H), then applies MP *)

Ltac cutMP G :=

match goal with

|- Prf ?L ?H ?F => eapply MP' with (H1 := G);

[simpl; reflexivity | try apply AXM | try apply AXM] end.

Example PrfEx2': Prf L [A -> B -> C; A; A -> B; A]%fol C.

Proof.

cutMP [A -> B -> C; A]%fol.

Prf L [(A -> B -> C)%fol; A] (?f -> C)%fol

Prf L [(A -> B)%fol; A] ?f

-

Prf L [(A -> B -> C)%fol; A] (?f -> C)%fol

cutMP [A -> B -> C]%fol.

-

Prf L [(A -> B)%fol; A] B

cutMP [(A -> B)]%fol.

Qed.

12.5.1.6 Hilbert’s axioms for implication: IMP1 and IMP2

#[local] Arguments MP {L Hyp1 Hyp2 A B} _ _.

Example PrfEx3 : Prf L [] (A -> A)%fol.

Proof.

pose (pf1 := IMP2 L A (A -> A)%fol A).

pf1: Prf L [] ((A -> (A -> A) -> A) -> (A -> A -> A) -> A -> A)%fol

Prf L [] (A -> A)%fol

pose (pf2 := IMP1 L A A).

pf1: Prf L [] ((A -> (A -> A) -> A) -> (A -> A -> A) -> A -> A)%fol

pf2: Prf L [] (A -> A -> A)%fol

Prf L [] (A -> A)%fol

pose (pf3 := IMP1 L A (A -> A)%fol).

12.5. PROOFS 253

pf1: Prf L [] ((A -> (A -> A) -> A) -> (A -> A -> A) -> A -> A)%fol

pf2: Prf L [] (A -> A -> A)%fol

pf3: Prf L [] (A -> (A -> A) -> A)%fol

Prf L [] (A -> A)%fol

pose (pf4 := MP pf1 pf3).

pf1: Prf L [] ((A -> (A -> A) -> A) -> (A -> A -> A) -> A -> A)%fol

pf2: Prf L [] (A -> A -> A)%fol

pf3: Prf L [] (A -> (A -> A) -> A)%fol

pf4: Prf L ([] ++ []) ((A -> A -> A) -> A -> A)%fol

Prf L [] (A -> A)%fol

exact (MP pf4 pf2).

Qed.

Remark 12.10 One may think that this proof is quite clumsy. Right. But
we must recall that Prf is a basic Hilbert-like proof system, which will make it
easier to study. In the next chapter, we will consider a derived proof system
where the deduction theorem will allow us to consider shorter and more natural
proofs.

Exercise 12.1 (**) Is it possible to build a term of type Prf L [A] B -> Prf

L [] (A->B)%fol ?

12.5.1.7 The rule of contraposition: CP

The only rule about the notH connective is the contraposition rule.
The following script shows that CP entails the derived rule of proof by con-

tradiction.

Example PrfEx4 (A B: Formula L): Prf L [] (~B -> B -> A)%fol.

Proof.

assert (pf1 : Prf L nil (~B -> ~A -> ~B)%fol) by apply IMP1.

assert (pf2 : Prf L nil ((~A -> ~B) -> (B -> A))%fol) by apply CP.

pose (pf3 := IMP2 L (~B)%fol (~A -> ~B)%fol (B -> A)%fol).

assert (pf4: Prf L nil (~B -> (~A -> ~B) -> B -> A)%fol).

{ assert (pf5 : Prf L nil (((~A -> ~B) -> B -> A) -> ~B ->

(~A -> ~B) -> B -> A)%fol)

by eapply IMP1.

apply(MP L _ _ _ _ pf5 pf2).

}

pose (pf6 := MP L _ _ _ _ pf3 pf4).

exact (MP L _ _ _ _ pf6 pf1).

Defined.

Remark 12.11 Same remark as 12.10.

Exercise 12.2 Replay this proof with pen and paper!

254 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

12.5.1.8 Rules about the universal quantifier: FA1, FA2 and FA3

Example PrfEx5 : Prf L [] ((allH 1 2, R v#1 v#2) -> allH 2, R a v#2)%fol.

Proof.

change (allH 2, R a v#2)%fol with (substF (allH 2, R v#1 v#2)%fol 1 a).

eapply FA1.

Qed.

Example PrfEx6 : Prf L [] (R v#1 v#1 -> allH 0, R v#1 v#1)%fol.

Proof.

apply FA2; simpl; intuition.

Qed.

Example PrfContrex7 :

Prf L [] (R v#1 v#1 -> allH 1, R v#1 v#1)%fol.

Proof.

apply FA2; simpl.

~ (1 = 1 \/ 1 = 1 \/ False)

Abort.

Example PrfEx8 : Prf L [] ((allH 0, P v#0 -> Q v#0) ->

(allH 0, P v#0) ->

(allH 0, Q v#0))%fol.

Proof. apply FA3. Qed.

12.5.1.9 Axioms for Equality: EQ1 to EQ3

The following proof applies FA1 in order to build a proof of Prf L [] (t=t)%fol

for any t 4.
Please look also at Figure 12.3 on the facing page

Lemma eq_refl (t:Term L): Prf L nil (t = t)%fol.

Proof.

assert (H: Prf L nil (allH 0, v#0 = v#0)%fol).

{

apply GEN.

- cbn; auto.

- apply EQ1.

}

change (nil:(list (Formula L))) with (nil++nil: list(Formula L)).

eapply MP.

2: apply H.

apply (FA1 _ (v#0 = v#0)%fol 0 t).

Defined.

4Please note that the quantification on t is at the meta-level (Coq’s level; not FOL).

12.5. PROOFS 255

(∀v0, v0 = v0)→ t = t
FA1

v0 = v0
EQ1

∀v0, v0 = v0
GEN

t = t

Figure 12.3: Proof tree of (eq_refl t)

12.5.1.10 Axioms schemes for Equality: EQ4 and EQ5

The constructors EQ4 and EQ5 build an infinite number of axioms, parameterized
by a relation or function symbol.

The function AxmEq4 generates a formula with n pairs of free variables (with
n the arity of the considered relation symbol).

Compute AxmEq4 L P_.

= (v#0 = v#1 -> P v#0 <->' P v#1)%fol

: Formula L

Example PrfEx9: Prf L [] (v#0 = v#1 -> P v#0 <-> P v#1)%fol.

Proof.

apply (EQ4 L P_).

Qed.

Compute AxmEq4 L R_.

= (v#2 = v#3 ->

v#0 = v#1 -> R v#2 v#0 <->' R v#3 v#1)%fol

: Formula L

Example PrfEx10:

Prf L [] (v#2 = v#3 -> v#0 = v#1 -> R v#2 v#0 <-> R v#3 v#1)%fol.

Proof.

apply (EQ4 L R_).

Qed.

Please note that EQ4 uses a sequence of variables generated by AxmEq4. Any
other sequence may cause EQ4 to fail.

Example PrfContrex9: Prf L [] (v#1 = v#0 -> P v#1 <-> P v#0)%fol.

Proof.

Prf L [] (v#1 = v#0 -> P v#1 <-> P v#0)%fol

Fail apply (EQ4 L P_).

The command has indeed failed with message:

Unable to unify "Prf L [] (AxmEq4 L P_)" with

"Prf L [] (v#1 = v#0 -> P v#1 <-> P v#0)%fol".

Prf L [] (v#1 = v#0 -> P v#1 <-> P v#0)%fol

256 CHAPTER 12. FIRST ORDER LOGIC (IN CONSTRUCTION)

Abort.

The following script shows that EQ5 is to function symbols what EQ4 is to
relation symbols.

Compute AxmEq5 L h_.

= (v#2 = v#3 ->

v#0 = v#1 -> h v#2 v#0 = h v#3 v#1)%fol

: Formula L

Example PrfEx11:

Prf L [] (v#2 = v#3 -> v#0 = v#1 -> h v#2 v#0 = h v#3 v#1)%fol.

Proof.

apply (EQ5 L h_).

Qed.

12.6 Concluding remarks
The type Prf is composed of very simple rules. Nevertheless, the examples pre-
sented in the previous section seem to show that proving even simple theorems
is not trivial at all.

Indeed, in the next chapter, we will consider a proof system SysPrf, based on
Prf, the properties of which will allow us to prove theorems in a much simpler
way.

Chapter 13

Natural Deduction (in
construction)

13.1 Contexts as sets

Let us look again at the proof scripts shown in 12.5.1.5 on page 251 and 12.5.1.6
on page 252.

• The statement of PrfEx2 contains a sequence of hypotheses with two oc-
currences of A. Moreover, the order in which the 4 hypotheses are listed is
determined by the type of the constructor MP (please look at Figure 12.1
on page 250). It would be better to replace this precise list of hypotheses
with “any list whose elements belong to the set {A,A→B;A→B→C}”.

• In the proof of PrfEx3 the Coq user would certainly ask “How do we apply
implication’s introduction rule?”.

The answer to both questions in [O’C05a] is the definition of a proof system,
derived from Prf, which considers sets of hypotheses (called systems in [O’C05a])
instead of list of hypotheses, thus making abstraction of the repetition and order
of appearance of hypotheses in the context.

The new system is simply defined as below (for a given language L) 1.

Definition SysPrf (T : System) (f : Formula) :=

exists Hyp : Formulas,

(exists prf : Prf Hyp f,

(forall g : Formula, In g Hyp -> mem _ T g)).

In a few words, proving a statement SysPrf _ T A is proving the existence
of a proof-tree of type Prf Hyp A, where Hyp is a list of hypotheses all elements
of which belong to T .

1In some shown snippets, arguments like L may be or not be implicit (depending on the
section they are extracted from). Please look at the Coq source.

257

258 CHAPTER 13. NATURAL DEDUCTION (IN CONSTRUCTION)

13.1.0.1 Notations

In the text, we may use the abbreviation T S A for (SysPrf L T A) and S A
for (SysPrf L Empty_set A)

We may also omit obvious braces in some set expressions:

• T,U for T ∪ U ,

• A,B,C for {A,B,C},

• T,A, . . . B for T ∪ {A . . . B}

• etc.

Remark 13.1 The type SysPrf has sort Prop, which prevent us from extracting
the underlying proof tree and its fringe from a proof of T S f . We only know
that such a proof exists, but cannot get it automatically through a Coq function.

Project 13.1 It would be nice (e.g. for a better understanding of the proof
of the deduction theorem) to be able to compute the proof-tree built by the
proof of the deduction lemma. On a fresh branch of the project, please change
the definition of SysPrf and fix the errors this change could cause in the rest
of the files. If ensuring compatibility with all the Goedel project is too long
and/or difficult, you may just make the changes in separate modules with an
“informative” SysPrf and limit the compatibility study to the contents of basic
modules like Deduction, folLogic, etc. Perhaps you will have to consider other
implementation of finite sets of formulas (e.g. lists).

13.1.0.2 Example

In the following script, we use PrfEx2 as a witness for proving a set-based version
of the original proof term, namely A;A→B;A→B→C S C.

Example SysPrfEx2 : SysPrf L

(fun x => List.In x [A; A->B; A -> B -> C]%fol)

C.

Proof.

exists [A -> B -> C; A; A -> B; A]%fol, PrfEx2; unfold mem, In.

forall g : Formula L,

List.In g [(A -> B -> C)%fol; A; (A -> B)%fol; A] ->

List.In g [A; (A -> B)%fol; (A -> B -> C)%fol]

(* ... *)

Exercise 13.1 Prove the following lemma (without the handy lemmas from
Ackermann.folLogic and their corollaries!).

Lemma MPSys L (G: System L) (A B: Formula L) :

SysPrf L G (A -> B)%fol -> SysPrf L G A -> SysPrf L G B.

../theories/html/hydras.Ackermann.folLogic.html

13.2. THE DEDUCTION THEOREM 259

13.1.1 Using properties of sets
The following three lemmas, from Ackermann.folLogic are direct consequences
of SysPrf’s definition.

Lemma Axm T f: mem _ T f -> SysPrf T f.

Proof.

exists (f :: nil), (AXM L f).

intros g [| []]; now subst.

Qed.

Lemma sysExtend (T U : System) (f : Formula):

Included _ T U -> SysPrf T f -> SysPrf U f.

Proof.

intros H [x [p H0]]; exists x, p.

intros g H1; apply H, H0, H1.

Qed.

Lemma sysWeaken (T : System) (f g : Formula):

SysPrf T f -> SysPrf (Ensembles.Add T g) f.

(* ... *)

The rule of implication elimination is derived from Prf’s modus ponens MP.
Since all elements of the fringe x [resp. x1] of the proof tree px [resp. px1] belong
to T, so are the elements of the fringe x++x1 of (MP … px px1).

Lemma impE (T : System) (f g : Formula):

SysPrf T (g -> f)%fol -> SysPrf T g -> SysPrf T f.

Proof.

intros [x [px Hx]] [x1 [px1 Hx1]].

set (A1 := MP L _ _ _ _ px px1); exists (x ++ x1), A1.

(* ... *)

13.2 The Deduction theorem
The deduction theorem (proved in Ackermann.Deduction is a handy tool for
proving a proposition f→g by pushing the hypothesis f into the context (it
corresponds roughly to the implication introduction rule in Coq).

Theorem DeductionTheorem :

forall (T : System) (f g : Formula)

(prf : SysPrf (Ensembles.Add _ T g) f),

SysPrf T (g -> f)%fol.

13.2.1 Sketch of proof
We advise the reader to replay this proof on h.er.is computer in order to better
understand its structure, which we will only comment briefly.

Let us assume the hypothesis H: T, g S f , meaning that there exists some
list F whose elements belong to T ∪ {g}, and a proof-tree t of type F ` h.

../theories/html/hydras.Ackermann.folLogic.html
../theories/html/hydras.Ackermann.Deduction.html

260 CHAPTER 13. NATURAL DEDUCTION (IN CONSTRUCTION)

The heart of the proof is an induction on t proving F ∩ T S (g→f) 2.
Please note that the case S = nil is common to many constructors of Prf,

thus the proof script starts with a study of this particular case, simply applied
11 times in the rest of the proof.

13.3 Derived rules and natural deduction
The library Ackermann.folLogic, Ackermann.folLogic2 and Ackermann.folLogic3
contain many derived rules which allow the user to build proofs in a natural de-
duction style (with introduction and elimination rules).

We present here only a few examples of these rules, the reader may consult
these libraries with Search or by looking at the coqdoc generated files. A meta-
exercise would be to re-prove a few of these lemmas and/or build an example
of application.

The rule of implication introduction is a trivial application of the deduction
theorem.

Lemma impI (T : System) (f g : Formula):

SysPrf (Ensembles.Add T g) f -> SysPrf T (g -> f)%fol.

Proof. intros ?; now apply (DeductionTheorem L). Qed.

The following lemma (corresponding to the CP constructor of type Prf) is
proven with the help of impE, impI, sysWeaken and CP.

Lemma contradiction (T : System) (f g : Formula):

SysPrf T f -> SysPrf T (~ f)%fol -> SysPrf T g.

Proof.

intros H H0; eapply impE with f.

- eapply impE with (~ g -> ~ f)%fol.

+ exists (nil (A:=Formula)).

exists (CP L g f); contradiction.

+ apply impI; now apply sysWeaken.

- assumption.

Qed.

We let the reader consult the proof of the following lemmas, or, much better,
re-prove them as exercises.

Lemma nnE (T : System) (f : Formula): SysPrf T (~ ~ f)%fol -> SysPrf T f.

Lemma nnI (T : System) (f : Formula): SysPrf T f -> SysPrf T (~ ~ f)%fol.

Lemma cp1 (T : System) (f g : Formula) :

SysPrf T (~ f -> ~ g)%fol -> SysPrf T (g -> f)%fol.

Lemma cp2 (T : System) (f g : Formula):

SysPrf T (g -> f)%fol -> SysPrf T (~f -> ~g)%fol.

2Please forgive the implicit coercion from lists to sets!

../theories/html/hydras.Ackermann.folLogic.html
../theories/html/hydras.Ackermann.folLogic.html
../theories/html/hydras.Ackermann.folLogic.html

13.3. DERIVED RULES AND NATURAL DEDUCTION 261

13.3.1 Rules for derived connectives and quantifiers
Let us keep in mind that the derived connectives: orH, andH, etc. and the
existential quantifier existH are defined in terms of impH, notH, forallH. By
unfolding these definitions, we prove easily a few natural deduction rules for the
derived symbols. For instance, the law of excluded middle for f : T S ∼ f ∨ f
for any T , is just an abbreviation of T S ∼∼ f→f .

Lemma noMiddle (T : System) (f : Formula): SysPrf T (~ f \/ f)%fol.

Proof.

unfold orH. (* optional*)

Unset Printing Notations. (* optional*)

T: System

f: Formula

SysPrf T (impH (notH (notH f)) f)

apply impI, nnE, Axm; right; constructor.

Set Printing Notations. (* optional *)

Qed.

Remark 13.2 The lines marked “optional” are just here in order to temporarily
deactivate the notation which print any formula of the form ∼A→B as A \/'
B. These three lines can be safely removed.

Lemma orI1 (T : System) (f g : Formula): SysPrf T f -> SysPrf T (f \/ g)%fol.

Proof.

intros H; apply impI; apply contradiction with f.

H: SysPrf T f

SysPrf (Ensembles.Add T (~ f)%fol) f

H: SysPrf T f

SysPrf (Ensembles.Add T (~ f)%fol) (~ f)%fol

(* ... *)

Lemma orE (T : System) (f g h : Formula):

SysPrf T (f \/ g)%fol ->

SysPrf T (f -> h)%fol -> SysPrf T (g -> h)%fol -> SysPrf T h.

Lemma orSys (T : System) (f g h : Formula):

SysPrf (Ensembles.Add T f) h -> SysPrf (Ensembles.Add T g) h ->

SysPrf (Ensembles.Add T (f \/ g)%fol) h.

Lemma andI (T : System) (f g : Formula):

SysPrf T f -> SysPrf T g -> SysPrf T (f /\ g)%fol.

Proof.

intros H H0; unfold andH;

apply orE with (~ (~f \/ ~g))%fol (~ f \/ ~g)%fol.

- apply noMiddle.

(* ... *)

262 CHAPTER 13. NATURAL DEDUCTION (IN CONSTRUCTION)

Here are a few examples of looking for rules using Coq’s Search command:

Search SysPrf (?A /\ ?B)%fol notH.

nImp:

forall (L : Language) (T : System L)

(f g : Formula L),

SysPrf L T (f /\ ~ g)%fol ->

SysPrf L T (~ (f -> g))%fol

nAnd:

forall (L : Language) (T : System L)

(f g : Formula L),

SysPrf L T (~ f \/ ~ g)%fol ->

SysPrf L T (~ (f /\ g))%fol

nOr:

forall (L : Language) (T : System L)

(f g : Formula L),

SysPrf L T (~ f /\ ~ g)%fol ->

SysPrf L T (~ (f \/ g))%fol

Search (SysPrf ?L ?T (?A /\ ?B)%fol -> SysPrf ?L ?T ?B).

andE2:

forall (L : Language) (T : System L)

(f g : Formula L),

SysPrf L T (f /\ g)%fol -> SysPrf L T g

Search (SysPrf _ _ (~ ~ _)%fol).

nnI:

forall (L : Language) (T : System L) (f : Formula L),

SysPrf L T f -> SysPrf L T (~ ~ f)%fol

nnE:

forall (L : Language) (T : System L) (f : Formula L),

SysPrf L T (~ ~ f)%fol -> SysPrf L T f

Search SysPrf (?a = ?b)%fol substF.

subWithEquals:

forall (L : Language) (f : Formula L) (v : nat)

(a b : Term L) (T : System L),

SysPrf L T (a = b)%fol ->

SysPrf L T (substF f v a -> substF f v b)%fol

Search SysPrf (exH ?v, _)%fol (allH ?v, _)%fol.

13.3. DERIVED RULES AND NATURAL DEDUCTION 263

nExist:

forall (L : Language) (T : System L) (f : Formula L)

(v : nat),

SysPrf L T (allH v, ~ f)%fol ->

SysPrf L T (~ (exH v, f))%fol

nForall:

forall (L : Language) (T : System L) (f : Formula L)

(v : nat),

SysPrf L T (exH v, ~ f)%fol ->

SysPrf L T (~ (allH v, f))%fol

13.3.2 Example: proof of Peirce’s law

For instance, let us prove Peirce’s rule, i.e. S ((A→B)→A)→A for any formulas
A and B.

The proof in Coq is available in MoreAck.FolExamples.

Section PeirceProof.

Arguments Add {U}.

Arguments Empty_set {U}.

Definition Peirce : Formula L := (((A -> B) -> A) -> A)%fol.

Lemma peirce : SysPrf L Empty_set Peirce.

Proof with auto with sets.

Let us start with an implication introduction. The judgement to prove
becomes (A→B)→A S A.

unfold Peirce; apply impI.

SysPrf L (Add Empty_set ((A -> B) -> A)%fol) A

Now, we may eliminate the disjunction in the instance ∼ A ∨ A of the law
of excluded middle. The only non-trivial case is about ∼ A.

Next goal is (A→B)→A S ∼A→A. Please keep in mind that our current
notation system interprets ∼A→A as a disjunction!

eapply orE with (~A)%fol A%fol;

[apply noMiddle | | apply impRefl].

SysPrf L (Add Empty_set ((A -> B) -> A)%fol)

(A \/' A)%fol

The rest of the proof is composed of basic proof steps.

apply impI; eapply impE with (A -> B)%fol.

../theories/html/hydras.MoreAck.FolExamples.html

264 CHAPTER 13. NATURAL DEDUCTION (IN CONSTRUCTION)

SysPrf L

(Add (Add Empty_set ((A -> B) -> A)%fol) (~ A)%fol)

((A -> B) -> A)%fol

SysPrf L

(Add (Add Empty_set ((A -> B) -> A)%fol) (~ A)%fol)

(A -> B)%fol

- apply Axm ...

- apply impI; apply contradiction with A; apply Axm ...

Qed.

End PeirceProof.

Exercise 13.2 Prove, using the rules described in Ackermann.folLogic, the fa-
mous drinkers theorem:

∃x, (D(x) =⇒ ∀ y, D(y))

where D (for “drinks”) is some predicate symbol of arity 1.

../theories/html/hydras.Ackermann.folLogic.html

Chapter 14

Languages for Arithmetic
(in construction)

To do 14.1 Make a chapter!

Two languages built with the usual symbols of arithmetic are defined in
Ackermann.Languages.

• The first language: LNT (Language of Number Theory) has just function
symbols for +, ×, 0 and successor.

• The second language: LNN (Language of Natural Numbers) has the same
function symbols as LNT plus one relation symbol for the strict inequality
< : LT (less than).

14.0.0.1 Language of Number Theory (LNT)

First, we declare two alphabets.

Inductive LNTFunction : Set :=

| Plus_ : LNTFunction

| Times_ : LNTFunction

| Succ_ : LNTFunction

| Zero_ : LNTFunction.

Inductive LNTRelation : Set :=.

Definition LNTFunctionArity (x : LNTFunction) : nat :=

match x with

| Plus_ => 2

| Times_ => 2

| Succ_ => 1

| Zero_ => 0

end.

In a second time, we build LNT and LNN by filling Language’s arity field.

265

../theories/html/hydras.Ackermann.Languages.html

266CHAPTER 14. LANGUAGES FOR ARITHMETIC (IN CONSTRUCTION)

Definition LNTRelationR (x : LNTRelation) : nat :=

match x with bot => LNTRelation_rec (fun _ => nat) bot end.

Definition LNT : Language := language LNTRelation LNTFunction LNTRelationR LNTFunctionArity.

Remark 14.1 We depart a little from [O’C05a]’s notations, where the function
and relation symbols are called Plus, Mult, LT, etc. In our version, these type
constructors are called Plus_, Mult_, LT_, etc., while the names without final
underscores are bound to term building functions (e.g. the function which takes
two terms and builds the term representing their sum) (see Remark 12.1).

14.0.0.2 Language of Natural Numbers (LNN)

LNN is an extension of LNT, by the addition of the < relation symbol.

Inductive LNNRelation : Set :=

LT_ : LNNRelation.

Definition LNNArityR (x : LNNRelation) : nat :=

match x with LT_ => 2 end.

Definition LNNArityF (f : LNTFunction) :=

LNTFunctionArity f.

Definition LNN : Language := language LNNRelation LNTFunction

LNNArityR LNNArityF.

14.0.0.3 Examples

Let us show a few examples (from MoreAck.FolExamples).

Compute arityF LNT Plus_.

= 2

: nat

Compute arityF LNN Succ_.

= 1

: nat

Compute arityR LNN LT_.

= 2

: nat

Fail Compute arityF LNT LT.

The command has indeed failed with message:

The reference LT was not found in the current

environment.

For instance the term v1 + 0, where v1 is a variable, is represented by the
following Gallina term of type (fol.Term LNT).

../theories/html/hydras.MoreAck.FolExamples.html

14.1. NOTATIONS FOR FORMULAS (EXPERIMENTAL) 267

(** v1 + 0 *)

Example t1_0: Term LNN :=

apply LNN Plus_

(Tcons (var 1)

(Tcons (apply LNN Zero_ Tnil) Tnil)).

Definition Formula := Formula LNN.

Definition Formulas := Formulas LNN.

Definition System := System LNN.

Definition Sentence := Sentence LNN.

Definition Term := Term LNN.

Definition Terms := Terms LNN.

Definition SysPrf := SysPrf LNN.

#[local] Arguments apply _ _ _ : clear implicits.

#[local] Arguments atomic _ _ _ : clear implicits.

14.1 Notations for Formulas (experimental)
In order to get more readable terms and formulas, we can define a few notations
in MoreAck.FOL_notations and MoreAck.LNN. Please note that these nota-
tion scopes are experimental: We are going to use them in examples and exer-
cises before using them in large original proof scripts (in the ordinals/Ackermann/
sub-directory).

We try to define notation scopes as close as possible to Coq’s syntax for
propositions.

Let us take for instance the following proposition (in math form):

∀ v0, v0 = 0 ∨ ∃ v1, v1 = 1 + v0

Here is a definition, using directly the goedel/Ackermann’s project syntax.

Definition f0 : Formula LNN :=

forallH 0

(orH

(equal (var 0) Zero)

(existH 1 (equal (var 0)

(apply

(Languages.Succ_ : Functions LNN)

(Tcons (var 1) (@Tnil _)))))).

Note that, because of redefinitions, the disjonction orH can be expanded in
terms of implication and negation (for instance when we use Compute).

To do 14.2 Present the general issue about evaluation, and our provisional
solution.

Print f0.

../theories/html/hydras.MoreAck.FOL_notations.html
../theories/html/hydras.MoreAck.LNN.html

268CHAPTER 14. LANGUAGES FOR ARITHMETIC (IN CONSTRUCTION)

f0 =

(allH 0,

v#0 = Zero \/

(exH 1,

v#0 = apply (Succ_ : Functions LNN) (Tcons v#1 Tnil)))%fol

: Formula LNN

Compute f0.

= (allH 0,

v#0 = apply Zero_ Tnil \/'

exH' 1 (v#0 = S_ v#1))%fol

: Formula LNN

Goal f0 = (allH 0, v#0 = Zero \/ exH 1, v#0 = Succ v#1)%fol.

f0 =

(allH 0, v#0 = Zero \/ (exH 1, v#0 = Succ v#1))%fol

reflexivity.

Qed.

Chapter 15

Gödel’s Encoding (in
construction)

15.1 Cantor pairing function
The library Ackermann.cPair defines and study Cantor’s bijection from N × N
into N. Indeed the cPair function used in this library is slightly different from
the ”usual” Cantor pairing function shown in a big part of the litterature , and
Coq’s standard library 1. Since both versions are equivalent upto a swap of the
rguments [a] and [b], we still use Russel O’Connors definitions and statements,
mainly in order to not have to modify the order of sub-goals in long proofs.

15.1.1 A helper function
The following function computes the sum of all natural numbers between 1 and
n: Σi=n

i=1 i.

Fixpoint sumToN (n : nat): nat :=

match n with

0 => 0

| S p => S p + sumToN p

end.

Lemma sumToN1 n : n <= sumToN n.

Lemma sumToN1 n : n <= sumToN n.

The tools presented in Chapter 11 allow us to prove that cPair is primitive
recursive.

#[export] Instance sumToNIsPR : isPR 1 sumToN.

Proof.

unfold sumToN in |- *.

apply indIsPR with (f := fun x y : nat => S x + y).

apply compose2_2IsPR

with (f := fun x y : nat => S x)

1In https://coq.inria.fr/distrib/current/stdlib/Coq.Arith.Cantor.html

269

../theories/html/hydras.Ackermann.cPair.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Arith.Cantor.html

270 CHAPTER 15. GÖDEL’S ENCODING (IN CONSTRUCTION)

(g := fun x y : nat => y)

(h := plus).

- apply filter10IsPR, succIsPR.

- apply pi2_2IsPR.

- apply plusIsPR.

Qed.

15.1.2 Cantor’s pairing function
In the Ackermann/Gödel projects, the Cantor pairing function is defined as
below:

cPair a b = a+Σi=a+b
i=1 i

Definition cPair (a b : nat) := a + sumToN (a + b).

Compute cPair 4 0.

= 14

: nat

Figure 15.1 shows a few values of cPairab , where a is the line number and
b the column number.

0 1 2 3 4 . . .
0 0 1 3 6 10 . . .
1 2 4 7 11 . . .
2 5 8 12 . . .
3 9 13 . . .
4 14 . . .
.

Figure 15.1: Cantor pairing function (first values)

Remark 15.1 Compatibility with Standard lib’s pairing function is stated by
the equality cPair a b = Cantor.to_nat (b, a) for any a and b. Obviously, this
swap and uncurrying of a and b doesn’t change the fundamental properties
of Cantor’s pairing function (being a primitive recursive bijection, monotony
properties).

15.1.2.1 Main properties

In order to prove that the function cPair is primitive recursive, we express it as
a composition of already proven primitive recursive functions.

#[export] Instance cPairIsPR : isPR 2 cPair.

Proof.

unfold cPair; apply compose2_2IsPR

with

15.1. CANTOR PAIRING FUNCTION 271

(f := fun x y : nat => x)

(g := fun x y : nat => sumToN (x + y))

(h := plus).

- apply pi1_2IsPR.

- apply compose2_1IsPR; [apply plusIsPR | apply sumToNIsPR].

- apply plusIsPR.

Qed.

cPair’s injectivity is stated by two lemmas:

Lemma cPairInj1 a b c d: cPair a b = cPair c d -> a = c.

Lemma cPairInj2 a b c d : cPair a b = cPair c d -> b = d.

15.1.3 Projections
Let a be some natural number, we look for two natural numbers x and y such
that cPairx y = a. More we want to prove that the function which compute x
[resp. y] out of a are primitive recursive.

Let us show on a small example how these projections are defined. Let’s
take for instance a = 11. Please look at the diagram of Fig. 15.1.

The following function looks for the anti-diagonal {(x, y)|x + y = k} the
number 11 belongs to, and returns k.

Let searchXY (a : nat) :=

boundedSearch (fun a y : nat => ltBool a (sumToN y.+1)) a.

In our example, 11 belongs to the anti-diagonal {(x, y)|x + y = 4}, which
contains values from 10 to 14. Thus the line containing 11 is the line x =
11− 10 = 1, and the column is y = 4− 1 = 3. Finally, we get 11 = cPair 1 3.

Definition cPairPi1 (a : nat) := a - sumToN (searchXY a).

Definition cPairPi2 (a : nat) := searchXY a - cPairPi1 a.

The following lemmas (still from Ackermann.cPair) prove the correctness of
these projections.

Lemma cPairProjections a: cPair (cPairPi1 a) (cPairPi2 a) = a.

Lemma cPairProjections1 (a b : nat): cPairPi1 (cPair a b) = a.

Lemma cPairProjections2 (a b : nat): cPairPi2 (cPair a b) = b.

#[export] Instance cPairPi1IsPR : isPR 1 cPairPi1.

#[export] Instance cPairPi2IsPR : isPR 1 cPairPi2.

Finally, let us show a few inequalities.

Lemma cPairLe1 (a b : nat) : a <= cPair a b.

Lemma cPairLe1A (a : nat) : cPairPi1 a <= a.

Lemma cPairLe2 (a b : nat) : b <= cPair a b.

Lemma cPairLe2A (a: nat): cPairPi2 a <= a.

Lemma cPairLe3 (a b c d : nat): a <= b -> c <= d -> cPair a c <= cPair b d.

Lemma cPairLt1 (a b : nat): a < cPair a (S b).

Lemma cPairLt2 (a b : nat): b < cPair (S a) b.

../theories/html/hydras.Ackermann.cPair.html

272 CHAPTER 15. GÖDEL’S ENCODING (IN CONSTRUCTION)

15.1.4 List encoding
The encoding of a list of natural numbers is based on cPair, through a structural
recursion.

Fixpoint codeList (l : list nat) : nat :=

match l with

| nil => 0

| n :: l' => S (cPair n (codeList l'))

end.

Compute codeList (3::1::nil).

Compute codeList (2::3::1::nil).

Let us look at the main step of the proof that codeList is injective.

Lemma codeListInj (l m : list nat): codeList l = codeList m -> l = m.

Proof.

(* ... *)

a: nat

l: list nat

Hrecl: forall m : list nat,

codeList l = codeList m -> l = m

n: nat

l0: list nat

H: (cPair a (codeList l)).+1

=

(cPair n (codeList l0)).+1

a :: l = n :: l0

Applying cPair’s injectivity and the induction hypothesis allows us to com-
plete the proof.

15.1.4.1 Encoding the nth function

The following function allows us to compute the n-th element of a list of natural
numbers, directly on the encoding of the considered list.

In the current version of the Ackermann Library, this function is defined via
an interactive proof. Its specification and correctness are proved by separate
lemmas.

Definition codeNth (n m:nat) : nat :=

let X := nat_rec (fun _ : nat => nat)

m

(fun _ Hrecn : nat => cPairPi2 (pred Hrecn)) n

in cPairPi1 (pred X).

Lemma codeNthCorrect :

forall (n : nat) (l : list nat), codeNth n (codeList l) = nth n l 0.

#[export] Instance codeNthIsPR : isPR 2 codeNth.

15.1. CANTOR PAIRING FUNCTION 273

Exercise 15.1 Give a new equivalent definition of codeNth, without using tac-
tics like assert. You may define an help function for this purpose, in which
case, please specify what your helper computes.

Exercise 15.2 Please consider the following definition:

From hydras.Ackermann Require Import primRec cPair.

From Coq Require Import Arith.

From Equations Require Import Equations.

Equations members (a:nat): list nat by wf a:=

members 0 := List.nil;

members (S z) := cPairPi1 z:: members (cPairPi2 z).

Prove that the functions codeList and members are inverse of each other.

15.1.5 Strong recursion
List encoding helps us to define primitive recursive functions where the compu-
tation of f n may depend of [part of] the values f 0, f 1, …, f (n− 1).

A simple example is the div2 function defined by

div2 0 = 0

div2 1 = 1

div2 (n+ 2) = S(div2 n)

The trick is to define a helper h where h n a is the natural number which
encodes the sequence 〈div2(n− 1), div2(n− 2), . . . , div2 1, div2 0〉.

In Coq, the helper associated with div2 is defined in MoreAck.PrimRecEx-
amples.

Let fdiv2 : naryFunc 2 :=

fun (n acc: nat) =>

match n with

0 | 1 => 0

| _ => S (codeNth 1 acc)

end.

The function (evalStrongRec n h c) computes (f c) if h is the helper associ-
ated with f . This function is defined in Ackermann.cPair.

Compute evalStrongRec _ fdiv2 0.

= 0

: nat

Compute evalStrongRec _ fdiv2 2.

= 1

: nat

Compute evalStrongRec _ fdiv2 3.

../theories/html/hydras.Ackermann.cPair.html

274 CHAPTER 15. GÖDEL’S ENCODING (IN CONSTRUCTION)

= 1

: nat

Compute evalStrongRec _ fdiv2 4.

= 2

: nat

Trying to compute the half of 5 this way resulted in unbearably long com-
putation times ….

Definitions and related lemmas are quite tricky, but look easy to apply.

Definition evalStrongRecHelp (n : nat) (f : naryFunc n.+2) :

naryFunc n.+1 :=

evalPrimRecFunc n (evalComposeFunc n 0 (Vector.nil _) (codeList nil))

(evalComposeFunc n.+2 2

(Vector.cons _ f _

(Vector.cons _ (evalProjFunc n.+2 n

(Nat.lt_lt_succ_r _ _

(Nat.lt_succ_diag_r _))) _

(Vector.nil _)))

(fun a b : nat => S (cPair a b))).

Definition evalStrongRec (n : nat) (f : naryFunc n.+2):

naryFunc n.+1 :=

evalComposeFunc n.+1 1

(Vector.cons _

(fun z : nat => evalStrongRecHelp n f z.+1) _ (Vector.nil _))

(fun z : nat => cPairPi1 z.-1).

#[export] Instance

evalStrongRecIsPR (n : nat) (f : naryFunc n.+2):

isPR _ f -> isPR _ (evalStrongRec n f).

Lemma computeEvalStrongRecHelp :

forall (n : nat) (f : naryFunc n.+2) (c : nat),

evalStrongRecHelp n f c.+1 =

compose2 n (evalStrongRecHelp n f c)

(fun a0 : nat =>

evalComposeFunc n 2

(Vector.cons (naryFunc n) (f c a0) 1

(Vector.cons (naryFunc n) (evalConstFunc n a0) 0

(Vector.nil (naryFunc n))))

(fun a1 b0 : nat => S (cPair a1 b0))).

Exercise 15.3 Prove formally that this implementation of div2 is correct.

Exercise 15.4 Define a function for computing the Fibonacci numbers by strong
recursion.

15.2. FIRST ORDER LOGIC AND GÖDEL ENCODING 275

15.2 First order logic and Gödel encoding
To do 15.1 Add comments!

Section Check_Proof.

Generalizable All Variables.

Variable L : Language.

Context `(cL: Lcode L cf cr).

Variable codeArityF : nat -> nat.

Variable codeArityR : nat -> nat.

Context (codeArityFIsPR : isPR 1 codeArityF).

Hypothesis codeArityFIsCorrect1 :

forall f : Functions L, codeArityF (cf f) = S (arityF L f).

Hypothesis codeArityFIsCorrect2 :

forall n : nat, codeArityF n <> 0 ->

exists f : Functions L, cf f = n.

Context (codeArityRIsPR : isPR 1 codeArityR).

Hypothesis

codeArityRIsCorrect1 :

forall r : Relations L, codeArityR (cr r) = S (arityR L r).

Hypothesis

codeArityRIsCorrect2 :

forall n : nat, codeArityR n <> 0 ->

exists r : Relations L, cr r = n.

Hypothesis codeFInj : forall f g : Functions L,

cf f = cf g -> f = g.

Hypothesis codeRInj :

forall R S : Relations L, cr R = cr S -> R = S.

#[export] Instance checkPrfIsPR : isPR 2 checkPrf.

Lemma checkPrfCorrect1 (l : list Formula) (f : Formula) (p : Prf l f):

checkPrf (codeFormula f) (codePrf l f p)

= S (codeList (map codeFormula l)).

Lemma checkPrfCorrect2 (n m : nat):

checkPrf n m <> 0 ->

exists f : Formula,

codeFormula f = n /\

(exists l : list Formula,

(exists p : Prf l f, codePrf l f p = m)).

276 CHAPTER 15. GÖDEL’S ENCODING (IN CONSTRUCTION)

Chapter 16

Every Primitive Recursive
Function is representable

277

278CHAPTER 16. EVERY PRIMITIVE RECURSIVE FUNCTION IS REPRESENTABLE

Part III

A few certified algorithms

279

Chapter 17

Smart computation of xn

17.1 Introduction
Nothing looks simpler than writing a function for computing xn. But on the
contrary, this simple programming exercise allows us to address advanced pro-
gramming techniques such as:

• monadic programming, and continuation passing style

• type classes, and generalized rewriting

• proof engineering, in particular proof reuse

• proof by reflection

• polymorphism and parametricity

• composition of correct programs, etc.

17.2 Some basic implementations
Let us start with a very naive way of computing the n-th power of x, where n
is a natural number and x belongs to some type for which a multiplication and
an identity element are defined.

From Module additions.FirstSteps

Section Definitions.

Variables (A : Type)

(mult : A -> A -> A)

(one : A).

#[local] Infix "*" := mult.

#[local] Notation "1" := one.

(** Naive (linear) implementation *)

281

../theories/html/additions.FirstSteps.html

282 CHAPTER 17. SMART COMPUTATION OF XN

Fixpoint power (x:A)(n:nat) : A :=

match n with

| 0%nat => 1

| S p => x * x ^ p

end

where "x ^ n" := (power x n).

An application of this function for computing xn needs n multiplications.
Despite this lack of efficiency, and thanks to its simplicity, we keep it as a
specification for more efficient and complex exponentiation algorithms. A func-
tion will be considered a correct exponentiation function if we can prove it is
extensionally equivalent to power.

17.2.1 A logarithmic exponentiation function
Using the following equations, we can easily define a polymorphic exponentiation
whose application requires only a logarithmic number of multiplications.

x1 = x (17.1)
x2p = (x2)p (17.2)

x2p+1 = (x2)p × x (17.3)
x1 × a = x× a (17.4)
x2p × a = (x2)p × a (17.5)

x2p+1 × a = (x2)p × (a× x) (17.6)

In equalities 17.4 to 17.6, the variable a plays the role of an accumulator
whose initial value (set by 17.3) is x. This accumulator helps us to get a tail-
recursive implementation.

For instance, the computation of 214 can be decomposed as follows:

214 = 47

= 163 × 4

= 2561 × (4× 16)

= 16384

With the same notations as in Sect 17.2 on the preceding page, we can
implement this algorithm in Gallina. The following definitions are still within
the scope of the section open in 17.2 on the previous page.

From Module additions.FirstSteps

Fixpoint binary_power_mult (x a:A)(p:positive) : A

:=

match p with

| xH => a * x

| xO q => binary_power_mult (x * x) a q

| xI q => binary_power_mult (x * x) (a * x) q

end.

../theories/html/additions.FirstSteps.html

17.2. SOME BASIC IMPLEMENTATIONS 283

Fixpoint Pos_bpow (x:A)(p:positive) :=

match p with

| xH => x

| xO q => Pos_bpow (x * x) q

| xI q => binary_power_mult (x * x) x q

end.

Definition N_bpow x (n:N) :=

match n with

| 0%N => 1

| Npos p => Pos_bpow x p

end.

Let us close the section Definitions and mark the argument A as implicit.

End Definitions.

Arguments N_bpow {A}.

Arguments power {A}.

Remark 17.1 Our function Pos_bpow can be considered as a tail recursive vari-
ant of the following function defined in Coq.PArith.BinPosDef.

Definition iter_op {A}(op:A->A->A) :=

fix iter (p:positive)(a:A) : A :=

match p with

| 1 => a

| p~0 => iter p (op a a)

| p~1 => op a (iter p (op a a))

end.

This scheme is used in Coq.ZArith.Zpow_alt in order to define a logarithmic
exponentiation Zpower_alt on Z (notation : x ^^ p).

Remark Note that closing the section Definitions makes us lose the handy
notations _ * _ and one. Fortunately, operational type classes will help us to
define nice infix notations for polymorphic functions (Sect. 17.3.1 on page 288).

17.2.2 Examples of computation
It is now possible to test our functions with various interpretations of × and 1:

Compute power Z.mul 1%Z 2%Z 10.

= 1024%Z

: Z

Compute N_bpow Z.mul 1%Z 2%Z 10.

284 CHAPTER 17. SMART COMPUTATION OF XN

= 1024%Z

: Z

Open Scope string_scope.

Compute power append "" "ab" 12.

= "abababababababababababab"

: string

Compute N_bpow append "" "ab" 12.

= "abababababababababababab"

: string

17.2.3 Computing Fibonacci numbers
The sequence of Fibonacci numbers is defined by the following equations:

F0 = 1 (17.7)
F1 = 1 (17.8)
Fn = Fn−1 + Fn−2 (n ≥ 2) (17.9)

In Coq, one can define this function by simple recursion.
From Library additions.Fib2

Fixpoint fib (n:nat) : N :=

match n with

0%nat | 1%nat => 1

| (S ((S p) as q)) => fib p + fib q

end.

Compute fib 20.

= 10946

: N

In [BC04a], several exercises 1 present ways to compute Fibonacci num-
bers, with the less number of recursive calls as possible. Please note that these
optimizations and the formal proof of their correctness are ad-hoc, i.e., ex-
clusively written for the Fibonacci numbers. In contrast, the optimizations
we present in this document apply, in their vast majority, generic techniques
of efficient computation of powers in a monoid. This example of Fibonacci
numbers has been developed with Yves Bertot, who wrote a first version with
SSreflect/Mathcomp [MT18]. This original version is available on hydra-battles
in the module additions.fib.

1Exercises 9.8 (page 270), 9.10 (page 271), 9.15 (page 276), 9.17 (page 284), and 15.8 (page
418).

../theories/html/additions.Fib2.html
../theories/html/additions.fib.html

17.2. SOME BASIC IMPLEMENTATIONS 285

17.2.3.1 Using 2x2 integer matrices

The following properties are well known. They are left as an exercise, since they
are not part of our development.

Exercise 17.1 1. Prove in Coq the following equality (for any n ≥ 2).(
1 1
1 0

)(
Fn Fn−1

Fn−1 Fn−2

)
=

(
Fn+1 Fn

Fn Fn−1

)
2. Infer (still in Coq) the following equality (still for n ≥ 2).(

Fn Fn−1

Fn−1 Fn−2

)
=

(
1 1
1 0

)n

3. Write a function using the previous equality for computing the n-th Fi-
bonacci number, and prove its equivalence with fib.

17.2.3.2 Removing duplicate computations

Yves Bertot’s optimization relies on the observation that all the powers of(
1 1
1 0

)
have the form

(
a+ b a
a b

)
where a and b are natural numbers.

Thus, it is possible to remove duplicate data and computations by reflecting
matrix multiplication and identity into N× N.

If we pose ϕ(a, b) =

(
a+ b a
a b

)
, then ϕ(a, b) × ϕ(c, d) = ϕ(ac + ad +

bc, ac+ bd), and ϕ(0, 1) =
(

1 0
0 1

)
.

Exercise 17.2 Prove formally these properties. Please note that their proof
is not needed in our development, they just help to understand the following
optimization.

So, let us define a binary operation, which makes N × N a monoid (with
(0, 1) as neutral element).

From Library additions.Fib2
The Monoid type class is defined page 290.

Definition mul2 (p q : N * N) :=

match p, q with

(a, b),(c,d) => (a*c + a*d + b*c, a*c + b*d)

end.

#[global] Instance Mul2 : Monoid mul2 (0,1).

Monoid mul2 (0, 1)

The following lemma is a simplification of the equality of Exercise 17.1.

Lemma next_fib (n:nat) : mul2 (1,0) (fib (S n), fib n) =

(fib (S (S n)), fib (S n)).

../theories/html/additions.Fib2.html

286 CHAPTER 17. SMART COMPUTATION OF XN

Let us consider a new definition of the Fibonacci function.

Definition fib_mul2 n := let (a,b) := power (M:=Mul2) (1,0) n

in (a+b).

Compute fib_mul2 20.

= 10946

: N

Lemma fib_mul2_OK_0 (n:nat) :

power (M:=Mul2) (1,0) (S (S n)) =

(fib (S n), fib n).

Proof.

induction n.

(* ... *)

Lemma fib_mul2_OK n : fib n = fib_mul2 n.

Time Compute fib_mul2 87.

= 1100087778366101931

: N

Finished transaction in 0.004 secs (0.004u,0.s) (successful)

Thus, any function able to compute more or less efficiently powers in a
monoid will give an algorithm for computing Fibonacci numbers. Unlike the
ad-hoc aforementioned proofs of [BC04a], the correctness of such an algorithm
is a direct consequence of the correctness of the used powering function. Several
examples will be presented in the rest of this document (in Section 17.4.6 on
page 300).

To do 17.1 Document the files contributed by Yves

• additions/fib.v (to rename ?)

• additions/stub.ml (to keep inside theories/ or move to src/ ?)

• theories/additions/make_fib_tests.txt (to put in a Makefile?)

17.2.4 Formal specification of an exponentiation function:
a first attempt

Let us compare the functions power and N_bpow. The first one is obviously
correct, since it is a straightforward translation of the mathematical definition.
The second one is much more efficient, but it is not obvious that its 18-line
long definition is bug-free. Thus, we must prove that the two functions are
extensionally equal (taking into account conversions between N and nat).

More abstractly, we can define a predicate that characterizes any correct
implementation of power, this “naive” function being a specification of any poly-
morphic exponentiation function.

First, we define a type for any such function.

17.2. SOME BASIC IMPLEMENTATIONS 287

Definition power_t := forall (A:Type)

(mult : A -> A -> A)

(one:A)

(x:A)

(n:N), A.

Then, we would say that a function f:power_t is a correct exponentiation
function if it is extensionally equal to power.

Module Bad.

Definition correct_expt_function (f : power_t) : Prop :=

forall A (mult : A -> A -> A) (one:A)

(x:A) (n:N), power mult one x (N.to_nat n) =

f A mult one x n.

Unfortunately, our definition of correct_expt is too general. It suffices to
build an interpretation where the multiplication is not associative or one is not
a neutral element to obtain different results through the two functions.

Section CounterExample.

Let mul (n p : nat) := n + 2 * p.

Let one := 0.

(** With our fake definition, [N_bpow] is not correct! *)

Remark mul_not_associative :

exists n p q, mul n (mul p q) <> mul (mul n p) q.

Proof.

exists 1, 1, 1; discriminate.

Qed.

Remark one_not_neutral :

exists n : nat, mul one n <> n.

Proof.

exists 1; discriminate.

Qed.

Lemma correct_exp_too_strong : ~ correct_expt_function (@N_bpow).

Proof.

intro H; specialize (H _ mul one 1 7%N).

discriminate H.

Qed.

End CounterExample.

End Bad.

So, we will have to improve our definition of correctness, by restricting the
universal quantification to associative operations and neutral elements, i.e., by
considering monoids. An exponentiation function will be considered as correct
if it returns always the same result as power in any monoid.

288 CHAPTER 17. SMART COMPUTATION OF XN

17.3 Representing monoids in Coq
In this section, we present a “minimal” algebraic framework in which exponen-
tiation can be defined and efficiently implemented.

Exponentiation is built on multiplication, and many properties of this op-
eration are derived from the associativity of multiplication. Furthermore, if we
allow the exponent to be any natural number, including 0, then we need to
consider a neutral element for multiplication.

The structure on which we define exponentiation is called a monoid. It is
composed of a carrier A, an associative binary operation × on A, and a neutral
element 1 for × . The required properties of × and 1 are expressed by the
following equations:

∀x y z : A, x× (y × z) = (x× y)× z (17.10)
∀x : A, x× 1 = 1× x = x (17.11)

In Coq, we define the monoid structure in terms of type classes[SO08, SvdW11].
The tutorial on type classes [CS] gives more details on type classes and opera-
tional type classes, also illustrated with the monoid structure.

First, we define a class and a notation for representing multiplication oper-
ators, then we use these definitions for defining the Monoid type class.

17.3.1 A common notation for multiplication
Operational type classes [SvdW11] allow us to define a common notation for
multiplication in any algebraic structure. First, we associate a class to the
notion of multiplication on any type A.

From Module additions/Monoid_def.v.

Class Mult_op (A:Type) := mult_op : A -> A -> A.

Print Mult_op.

Mult_op =

fun A : Type => A -> A -> A

: Type -> Type

Arguments Mult_op A%type_scope

From the type theoretic point of view, the term (Mult_op A) is βδ-reducible
to A→A→A, and if op has type (Mult_op A), then (@mult_op A op) is convert-
ible with op.

Goal forall A (op: Mult_op A), @mult_op A op = op.

reflexivity.

Qed.

We are now ready to define a new notation scope, in which the notation
x * y will be interpreted as an application of the function mult_op.

../theories/html/additions.Monoid_def.html

17.3. REPRESENTING MONOIDS IN COQ 289

Delimit Scope M_scope with M.

Infix "*" := mult_op : M_scope.

Open Scope M_scope.

Let us show two examples of use of the notation scope M_scope. Each example
consists in declaring an instance of Mult_op, then type checking or evaluating a
term of the form x * y in M_scope.

Note that, since the reserved notation "_ * _ " is present in several scopes
such as nat_scope, Z_scope, N_scope, etc., in addition to M_scope, the user should
take care of which scopes are active — and with which precedence — in a Gallina
term. In case of doubt, explicit scope delimiters should be used.

17.3.1.1 Multiplication on Peano numbers

Multiplication on type nat, called Nat.mul in Standard Library, has type
nat -> nat -> nat, which is convertible with Mult_op nat. Thus the following
definition is accepted:

Module Demo.

#[local] Instance nat_mult_op : Mult_op nat := Nat.mul.

Inside M_scope, the expression 3 * 4 is correctly read as an application of
mult_op. Nevertheless this term is convertible with Nat.mul 3 4, as shown by
the interaction below.

From Module additions.Monoid_def

Set Printing All.

Check 3 * 4.

@mult_op nat nat_mult_op (S (S (S O)))

(S (S (S (S O))))

: nat

Unset Printing All.

Compute 3 * 4.

= 12

: nat

End Demo.

17.3.1.2 String concatenation

We can use the notation "_ * _ " for other types than numbers. In the following
example, the expression "abc" * "def" is interpreted as
@mult_op string ?X "abc" "def", then the type class mechanism replaces the
unknown ?X with string_op.

From Module additions.Monoid_def

../theories/html/additions.Monoid_def.html
../theories/html/additions.Monoid_def.html

290 CHAPTER 17. SMART COMPUTATION OF XN

#[global] Instance string_op : Mult_op string := append.

Open Scope string_scope.

Example ex_string : "ab" * "cde" = "abcde".

Proof. reflexivity. Qed.

17.3.1.3 Solving ambiguities

Let A be some type, and let us assume there are several instances of Mult_op
A. For solving ambiguity issues, one can add a precedence to each instance
declaration of Mult_op A. In any case, such ambiguity can be addressed by
explicitly providing some arguments of mult_op. For instance, in Sect. 17.3.3.2
on the facing page, we consider various monoids on types nat and N.

17.3.2 The Monoid type class
We are now ready to give a definition of the Monoid class, using * as an infix
operator in scope %M for the monoid multiplication.

The following class definition, from Module additions.Monoid_def, is pa-
rameterized with some type A, a multiplication (called op in the definition),
and a neutral element 1 (called one in the definition).

Class Monoid {A:Type}(op : Mult_op A)(one : A) : Prop :=

{

op_assoc : forall x y z, x * (y * z) = x * y * z;

one_left : forall x, one * x = x;

one_right : forall x, x * one = x

}.

17.3.3 Building instances of Monoid

Let A be some type, op an instance of Mult_op A and one: A. In order to
build an instance of (Monoid A op one), one has to provide proofs of “monoid
axioms” op_assoc, one_left and one_right.

Let us show various instances, which will be used in further proofs and ex-
amples. Complete definitions and proofs are given in File additions/Monoid_in-
stances.v.

17.3.3.1 Monoid on Z

The following monoid allows us to compute powers of integers of arbitrary size,
using type Z from standard library:

#[global] Instance Z_mult_op : Mult_op Z := Z.mul.

#[global] Instance ZMult : Monoid Z_mult_op 1.

Proof.

split.

../theories/html/additions.Monoid_def.html
../theories/html/additions.Monoid_instances.html
../theories/html/additions.Monoid_instances.html

17.3. REPRESENTING MONOIDS IN COQ 291

forall x y z : Z, (x * (y * z))%M = (x * y * z)%M

forall x : Z, (1 * x)%M = x

forall x : Z, (x * 1)%M = x

all: unfold Z_mult_op, mult_op;intros;ring.

Qed.

17.3.3.2 Monoids on type nat and N

We define two monoids on type nat:

• The “natural” monoid (N,×, 1) :

#[global] Instance nat_mult_op : Mult_op nat | 5 := Nat.mul.

#[global] Instance Natmult : Monoid nat_mult_op 1%nat | 5.

Proof.

split;unfold nat_mult_op, mult_op; intros; ring.

Qed.

• The “additive” monoid (N,+, 0). This monoid will play an important role
in correctness proofs of complex exponentiation algorithms. Its most im-
portant property is that the n-th power of 1 is equal to n. See Sect. 17.7.4
on page 313 for more details.

#[global] Instance nat_plus_op : Mult_op nat | 12 := Nat.add.

#[global] Instance Natplus : Monoid nat_plus_op 0%nat | 12.

Proof.

split;unfold nat_plus_op, mult_op; intros; ring.

Qed.

Similarly, instances NMult and NPlus are built for type N, and PMult for type
positive.

17.3.3.3 Machine integers

Cyclic numeric types are good candidates for testing exponentiations with big
exponents, since the size of data is bounded.

The type int31 is defined in Module Coq.Numbers.Cyclic.Int31.Int31
of Coq’s standard library. The tactic ring works with this type, and helps us
to register an instance Int31Mult of class Monoid int31_mult_op 1.

#[global] Instance int63_mult_op : Mult_op int := mul.

#[global] Instance Int63mult : Monoid int63_mult_op 1.

Proof.

split;unfold int63_mult_op, mult_op; intros; ring.

Qed.

292 CHAPTER 17. SMART COMPUTATION OF XN

Beware that machine integers are not natural numbers!

Module Bad.

Fixpoint int63_from_nat (n:nat) :int :=

match n with

| O => 1

| S p => 1 + int63_from_nat p

end.

Coercion int63_from_nat : nat >-> int.

Fixpoint fact (n:nat) : int := match n with

O => 1

| S p => n * fact p

end.

Compute fact 160.

= 0

: int

End Bad.

17.3.4 Matrices on a semi-ring
Let (A,+,×) be a semi-ring. We define a multiplicative monoid on the set of
e.g. 2 × 2-) square matrices over A. It suffices to define an instance of Monoid
within the scope of a hypothesis of type semi_ring_theory.

Section M2_def.

Variables (A:Type)

(zero one : A)

(plus mult : A -> A -> A).

Notation "0" := zero.

Notation "1" := one.

Notation "x + y" := (plus x y).

Notation "x * y " := (mult x y).

Variable rt : semi_ring_theory zero one plus mult (@eq A).

Add Ring Aring : rt.

Structure M2 : Type := {c00 : A; c01 : A;

c10 : A; c11 : A}.

Definition Id2 : M2 := Build_M2 1 0 0 1.

Definition M2_mult (m m':M2) : M2 :=

Build_M2 (c00 m * c00 m' + c01 m * c10 m')

(c00 m * c01 m' + c01 m * c11 m')

17.3. REPRESENTING MONOIDS IN COQ 293

(c10 m * c00 m' + c11 m * c10 m')

(c10 m * c01 m' + c11 m * c11 m').

#[global] Instance M2_op : Mult_op M2 := M2_mult.

#[global] Instance M2_Monoid : Monoid M2_op Id2.

(* ... *)

17.3.5 Monoids and equivalence relations
In some contexts, the “axioms” of the Monoid class may be too restrictive. For
instance, consider multiplication in Z/mZ where 1 < m. Although it could be
possible to compute with values of the dependent type {n:N | n < m}, it looks
simpler to compute with numbers of type N and consider the multiplication x×y
mod m.

It is easy to prove that this operation is associative, using library NArith.
Unfortunately, the following proposition is false in general (left as an exercise).

∀x : N, (1 ∗ x) mod m = x

Thus, we define a more general class, parameterized by an equivalence re-
lation Aeq on a type A, compatible with the multiplication *. The laws of as-
sociativity and neutral element are not expressed as Leibniz equalities but as
equivalence statements:

First, let us define an operational type class for equivalence relations:
From Module additions.Monoid_def

Class Equiv A := equiv : relation A.

Infix "==" := equiv (at level 70) : type_scope.

The definition of class EMonoid looks like Monoid’s definition, plus some con-
straints on E_eq.

Please look for instance at our tutorial on type classes and relations [CS]
for understanding the use of type classes Equivalence, Reflexive, Proper, etc,
in relation with tactics like rewrite, reflexivity, etc., in proofs which involve
equivalence relations instead of equality.

Class EMonoid (A:Type)(E_op : Mult_op A)(E_one : A)

(E_eq: Equiv A): Prop :=

{

Eq_equiv :> Equivalence equiv;

Eop_proper : Proper (equiv ==> equiv ==> equiv) E_op;

Eop_assoc : forall x y z, x * (y * z) == x * y * z;

Eone_left : forall x, E_one * x == x;

Eone_right : forall x, x * E_one == x

}.

17.3.5.1 Coercion from Monoid to EMonoid

Every instance of class Monoid can be transformed into an instance of EMonoid,
considering Leibniz’ equality eq. Thus, our definitions and theorems about

../theories/html/additions.Monoid_def.html

294 CHAPTER 17. SMART COMPUTATION OF XN

exponentiation will take place as much as possible within the more generic
framework of EMonoids.

#[global] Instance eq_equiv {A} : Equiv A := eq.

#[global] Instance Monoid_EMonoid `(M:@Monoid A op one) :

EMonoid op one eq_equiv.

Proof.

split; unfold eq_equiv, equiv in *.

- apply eq_equivalence.

- intros x y H z t H0; now subst.

- intros;now rewrite (op_assoc).

- intro; now rewrite one_left.

- intro;now rewrite one_right.

Qed.

Remark 17.2 In the definition of Monoid_EMonoid, the free variables A, op and
one are automatically generalized thanks to the backquote syntax (see the section
about implicit generalization in the reference manual [Coq]).

Thanks to the following coercion, every instance of Monoid can now be con-
sidered as an instance of EMonoid. For more details, please look at the section
Implicit Coercions of Coq’s reference manual [Coq].

Coercion Monoid_EMonoid : Monoid >-> EMonoid.

From Module additions.Monoid_instances

Check NMult : EMonoid N.mul 1%N eq.

NMult : EMonoid N.mul 1 eq

: EMonoid N.mul 1 eq

17.3.5.2 Example : Arithmetic modulo m

The following instance of EMonoid describes the set of integers modulo m, where
m is any integer greater than or equal to 2. For simplicity’s sake, we represent
such values using the N type, and consider “equivalence modulo m” instead of
equality.

Section Nmodulo.

Variable m : N.

Hypothesis m_gt_1 : 1 < m.

Definition mult_mod (x y : N) := (x * y) mod m.

Definition mod_eq (x y: N) := x mod m = y mod m.

Instance mod_equiv : Equiv N := mod_eq.

Instance mod_op : Mult_op N := mult_mod.

Instance mod_Equiv : Equivalence mod_equiv.

../theories/html/additions.Monoid_instances.html

17.4. COMPUTING POWERS IN ANY EMONOID 295

#[global] Instance mult_mod_proper :

Proper (mod_equiv ==> mod_equiv ==> mod_equiv) mod_op.

#[local] Open Scope M_scope.

Lemma mult_mod_associative : forall x y z,

x * (y * z) = x * y * z.

Lemma one_mod_neutral_l : forall x, 1 * x == x.

Lemma one_mod_neutral_r : forall x, x * 1 == x.

#[global] Instance Nmod_Monoid : EMonoid mod_op 1 mod_equiv.

End Nmodulo.

Section S256.

Let mod256 := mod_op 256.

#[local] Existing Instance mod256 | 1.

Compute (211 * 67)%M.

= 57

: N

Outside the section S256, the term (211 * 67)%M is interpreted as a plain
multiplication in type N:

End S256.

Compute (211 * 67)%M.

= 14137

: N

17.4 Computing powers in any EMonoid
The module additions.Pow defines two functions for exponentiation on any
EMonoid on carrier A. They are essentially the same as in Sect. 17.2 on page 281.
The main difference lies in the arguments of the functions, which now contain
an instance M of class EMonoid. Thus, the arguments associated with the mul-
tiplication, the neutral element and the equivalence relation associated with M

are left implicit.

17.4.1 The naive (linear) algorithm
The new version of the linear exponentiation function is as follows:

Fixpoint power `{M: @EMonoid A E_op E_one E_eq}

(x:A)(n:nat) :=

match n with 0%nat => E_one

| S p => x * x ^ p

../theories/html/additions.Pow.html

296 CHAPTER 17. SMART COMPUTATION OF XN

end

where "x ^ n" := (power x n) : M_scope.

The three following lemmas will be used by the rewrite tactic in further
correctness proofs. Note that the first two lemmas are strong (i.e., Leibniz)
equalities, whilst power_eq3 is only an equivalence statement, because its proof
uses one of the EMonoid laws, namely Eone_right.

Lemma power_eq1 `{M: @EMonoid A E_op E_one E_eq}(x:A) :

x ^ 0 = E_one.

Proof. reflexivity. Qed.

Lemma power_eq2 `{M: @EMonoid A E_op E_one E_eq}(x:A) (n:nat) :

x ^ (S n) = x * x ^ n.

Proof. reflexivity. Qed.

Lemma power_eq3 `{M: @EMonoid A E_op E_one E_eq}(x:A) :

x ^ 1 == x.

Proof. cbn; rewrite Eone_right; reflexivity. Qed.

17.4.1.1 Examples of computation

In the following computations, we first show an exponentiation in Z, then in
the type of 31-bit machine integers.2

From Module additions.Demo_power

Open Scope M_scope.

Compute 22%Z ^ 20.

= 705429498686404044207947776

: Z

Import Uint63.

Search (Z -> int).

of_Z: Z -> int

Coercion of_Z : Z >-> int.

Compute 22%int63 ^ 50.

= 8855202767317237760%uint63

: int

17.4.2 The binary exponentiation algorithm
Please find below the implementation of binary exponentiation using type classes
(to be compared with the version in 17.2.1 on page 282).

2phi and phi_inv are standard library’s conversion functions between types Z and int31,
used for making it possible to read and print values of type int31.

../theories/html/additions.Demo_power.html

17.4. COMPUTING POWERS IN ANY EMONOID 297

From Module additions.Pow

Fixpoint binary_power_mult `{M: @EMonoid A E_op E_one E_eq}

(x a:A)(p:positive) : A

:=

match p with

| xH => a * x

| xO q => binary_power_mult (x * x) a q

| xI q => binary_power_mult (x * x) (a * x) q

end.

Fixpoint Pos_bpow `{M: @EMonoid A E_op E_one E_eq}

(x:A)(p:positive) :=

match p with

| xH => x

| xO q => Pos_bpow (x * x) q

| xI q => binary_power_mult (x * x) x q

end.

It is easy to extend Pos_bpow’s domain to the type of all natural numbers:
From Module additions.Pow

Definition N_bpow `{M: @EMonoid A E_op E_one E_eq} x (n:N) :=

match n with

| 0%N => E_one

| Npos p => Pos_bpow x p

end.

Infix "^b" := N_bpow (at level 30, right associativity) : M_scope.

17.4.3 Refinement and correctness
We have got two functions for computing powers in any monoid. So, it is
interesting to ask oneself whether this duplication is useful, and which would
be the respective role of N_bpow and power.

• The function power, although very inefficient, is a direct translation of the
mathematical definition, as shown by lemmas power_eq1 to
power_eq3. Moreover, its structural recursion over type nat allows sim-
ple proofs by induction over the exponent. Thus, we will consider power

as a specification of any exponentiation algorithm.

• Functions N_bpow and Pos_bpow are more efficient, but less readable than
power, and we cannot use these functions before having proved their cor-
rectness. In fact, the correctness of N_bpow and Pos_bpow will mean “being
extensionally equivalent to power”. For instance N_bpow’s correctness is ex-
pressed by the following statement (in the context of an EMonoid on type
A).

From Module additions.Pow

Lemma N_bpow_ok :

forall n x, x ^b n == x ^ N.to_nat n.

../theories/html/additions.Pow.html
../theories/html/additions.Pow.html
../theories/html/additions.Pow.html

298 CHAPTER 17. SMART COMPUTATION OF XN

The relationship between power and N_bpow can be considered as a kind
of refinement as in the B-method [Abr96]. Note that the two representations
of natural numbers and the function N.to_nat form a kind of data refinement
[Abr10, CDM13].

17.4.4 Proof of correctness of binary exponentiation w.r.t.
the function power

Section M_given of Module additions.Pow is devoted to the proof of properties
of the functions above. Note that properties of power refer to the specification
of exponentiation, and can be applied for proving correctness of any implemen-
tation.

In this section, we consider an arbitrary instance M of class EMonoid.

Section M_given.

Variables (A:Type) (E_one:A) .

Context (E_op : Mult_op A) (E_eq : Equiv A)

(M:EMonoid E_op E_one E_eq).

17.4.4.1 Properties of exponentiation

We establish a few well-known properties of exponentiation, and define some
basic tactics for simplifying proof search.

Ltac monoid_rw :=

rewrite Eone_left ||

rewrite Eone_right ||

rewrite Eop_assoc.

Ltac monoid_simpl := repeat monoid_rw.

In order to make possible proof by rewriting on expressions which contain the
exponentiation operator, we have to prove that, whenever x == y, the equality
xn == yn holds for any exponent n. For this purpose, we use the Proper class
of module Coq.Classes.Morphisms

#[global] Instance power_proper :

Proper (equiv ==> eq ==> equiv) power.

In the following proofs, we note how notations, type classes and generalized
rewriting can be used to write algebraic properties in a nice way.

Lemma power_of_plus :

forall x n p, x ^ (n + p) == x ^ n * x ^ p.

Ltac power_simpl := repeat (monoid_rw || rewrite <- power_of_plus).

Please note that the following lemmas do not require the operation * to be
commutative.

../theories/html/additions.Pow.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Classes.Morphisms.html

17.4. COMPUTING POWERS IN ANY EMONOID 299

Lemma power_commute x n p:

x ^ n * x ^ p == x ^ p * x ^ n.

Proof.

power_simpl; now rewrite (Nat.add_comm n p).

Qed.

Lemma power_commute_with_x x n:

x * x ^ n == x ^ n * x.

Proof.

induction n; cbn.

- now monoid_simpl.

- rewrite IHn at 1; now monoid_simpl.

Qed.

Lemma power_of_power x n p:

(x ^ n) ^ p == x ^ (p * n).

Proof.

induction p; cbn.

- reflexivity.

- rewrite IHp; now power_simpl.

Qed.

The following two equalities are auxiliary lemmas for proving correctness of
the binary exponentiation functions.

Lemma sqr_eqn : forall x, x ^ 2 == x * x.

Lemma power_of_square x n : (x * x) ^ n == x ^ n * x ^ n.

Proof.

induction n; cbn; monoid_simpl.

- reflexivity.

- rewrite IHn; now factorize.

Qed.

17.4.5 Equivalence of the two exponentiation functions
Since binary_power_mult is defined by structural recursion on the exponent
p:positive, its basic properties are proved by induction along positive’s con-
structors.

From Module additions.Pow

Lemma binary_power_mult_ok :

forall p a x, binary_power_mult x a p == a * x ^ Pos.to_nat p.

Proof.

induction p as [q IHq | q IHq|].

(* ... *)

Lemma Pos_bpow_ok :

forall p x, Pos_bpow x p == x ^ Pos.to_nat p.

Lemma Pos_bpow_ok_R :

forall p x, p <> 0 ->

Pos_bpow x (Pos.of_nat p) == x ^ p.

../theories/html/additions.Pow.html

300 CHAPTER 17. SMART COMPUTATION OF XN

Lemma N_bpow_ok :

forall n x, x ^b n == x ^ N.to_nat n.

Lemma N_bpow_ok_R :

forall n x, x ^b (N.of_nat n) == x ^ n.

17.4.5.1 Remark

The preceding lemmas can be applied for deriving properties of the binary ex-
ponentiation functions:

Lemma N_bpow_commute : forall x n p,

x ^b n * x ^b p ==

x ^b p * x ^b n.

Proof.

intros x n p; repeat rewrite N_bpow_ok;

apply power_commute.

Qed.

17.4.6 Fibonacci, once again
We can use the function Pos_bpow for computing Fibonacci numbers (see Sec-
tion 17.2.3.2 on page 285).

From Module additions.Fib2

Definition fib_pos n :=

let (a,b) := Pos_bpow (M:= Mul2) (1,0) n in

(a+b).

Compute fib_pos xH.

= 1

: N

Compute fib_pos 10%positive.

= 89

: N

Time Compute fib_pos 153%positive.

= 68330027629092351019822533679447

: N

Finished transaction in 0.012 secs (0.012u,0.s) (successful)

Fibonacci will come back in Sect. 17.9.11 on page 343.

17.5 Comparing exponentiation algorithms with
respect to efficiency

It looks obvious that the binary exponentiation algorithm is more efficient than
the naive one. Can we study within Coq the respective efficiency of both func-
tions? Let us take a simple example with the exponent 17, in any EMonoid.

../theories/html/additions.Fib2.html

17.5. COMPARING EXPONENTIATION ALGORITHMS WITH RESPECT TO EFFICIENCY301

Eval simpl in fun (x:A) => x ^b 17.

= fun x : A =>

x *

(x * x * (x * x) * (x * x * (x * x)) *

(x * x * (x * x) * (x * x * (x * x))))

: A -> A

Therefore, we note that the term (fun (x:A) =>x ^b 17) is convertible —
thus logically indistinguishable — with a function that performs 16 multiplica-
tions.

Likewise, let us simplify the term (fun (x:A) =>x ^ 17):

Eval simpl in fun x => x ^ 17.

= fun x : A =>

x *

(x *

(x *

(x *

(x *

(x *

(x *

(x * (x * (x * (x * (x * (x * (...)))))))))))))

: A -> A

From these tests, we may infer that representing exponentiation algorithms
as plain arithmetic functions hides information about the real structure of the
computations, particularly about sharing intermediate computations.

Thus, we propose to define a data structure that makes explicit the sequence
of multiplications that lead to the computation of xn. For instance, the values
of x * x and x * x * (x * x) are used twice in the computation of x17 with
the binary algorithm. This information should appear explicitly in the data
structure chosen for representing and comparing exponentiation algorithms.

It is well known that local variables can be used to store intermediate results.
In an ISWIM - ML style, the function computing x17 could be written as follows:

Definition pow_17 (x:A) :=

let x2 := x * x in

let x4 := x2 * x2 in

let x8 := x4 * x4 in

let x16 := x8 * x8 in

x16 * x.

Unfortunately, Coq’s let-in construct is useless for our purpose, since ζ-
conversion would make the sharing of computations disappear.

Eval cbv zeta beta delta [pow_17] in pow_17.

= fun x : A =>

x * x * (x * x) * (x * x * (x * x)) *

(x * x * (x * x) * (x * x * (x * x))) * x

: A -> A

302 CHAPTER 17. SMART COMPUTATION OF XN

In the next section, we define a data structure for representing the computa-
tions that lead to the evaluation of some power xn, where intermediary results
are explicitly named for further use in the rest of the computation.

17.6 Addition chains
An addition chain (in short, a chain) [Bra39] is a representation of a sequence
of intermediate steps that lead to the evaluation of xn, under the assumption
that each of these steps is a computation of a power xi, with i < n.

In articles from the combinatorist community, e.g., [Bra39, BB87], addition
chains are represented as sequences of positive integers, each member of which
is either 1 or the sum of two previous elements. For instance, the three following
sequences are addition chains for the exponent 87:

c87 = (1, 2, 3, 6, 7, 10, 20, 40, 80, 87) (17.12)
c′87 = (1, 2, 3, 4, 7, 8, 16, 23, 32, 64, 87) (17.13)
c′′87 = (1, 2, 4, 8, 16, 32, 64, 80, 84, 86, 87) (17.14)

It is possible to associate to any addition chain a directed acyclic graph:
whenever i = j + k, there is an arc from xj to xi and an arc from xk to xi.
Figures 17.1 and 17.2 show the graphical representations of c87 and c′87. Please
note that some chains may be represented by various different dags (directed
acyclic graphs). For instance, we can associate four different dags to the chain
(1, 2, 3, 4, 6, 9, 13).

Figure 17.1: Graphical representation of c87 (9 multiplications)

x x2 x3 x6 x7 x10 x20 x40 x80 x87

Figure 17.2: Graphical representation of c′87 (10 multiplications)

x x2 x3 x4 x7 x8 x16 x23 x32 x64 x87

Let us assume that the efficiency of an exponentiation algorithm is pro-
portional to the number of multiplications it requires. This assumption looks
reasonable when the data size is bounded (for instance : machine integers, arith-
metic modulo m, etc.). Let us define the length of a chain c as its number |c| of
exponents (without counting the initial 1). This length is the number of multi-
plications needed for computing the xis by applying the following algorithm:

For any item i of c (but the first one), there exists j and k in c,
where i = j + k, and xj and xk are already computed.
Thus, compute xi = xj × xk.

17.6. ADDITION CHAINS 303

In our little example, we have |c87| = 9 < 10 = |c′87|. In the rest of this
chapter, we will try to focus on the following aspects:

• Define a representation of addition chains that allows to compute effi-
ciently xn in any monoid, for quite large exponents n;

• Certify that our representation of chains is correct, i.e., determines a com-
putation of xn for a given n;

• Define and certify functions for automatically generating correct and short-
est as possible chains.

In a previous work [BCHM95, BCS91, Cas04], addition chains were rep-
resented so as to allow efficient computations of powers and certification of a
family of automatic chain generators. We present here a new implementation
that takes into account some advances in the way we use Coq: generalized
rewriting, type classes, parametricity, etc.

17.6.1 A type for addition chains
Let us recall that we want to represent some algorithms of the form described in
section 17.5, but avoiding to represent intermediate results by let-in constructs.
We describe below the main design choices we made:

• Continuation Passing Style (CPS) [Rey93] is a way to make explicit the
control in the evaluation of an expression, in a purely functional way.
For every intermediate computation step, the result is sent to a continua-
tion that executes the further continuations. When the continuation is a
lambda-abstraction, its bound variable gives a name to this result

• Like in Parametric Higher Order Abstract Syntax (PHOAS) [Chl08], the
local variables associated to intermediate results are represented by vari-
ables of type A, where A is the underlying type of the considered monoid.

17.6.1.1 Definition

Let A be some type; a computation on A is

• either a final step, returning some value of type A

• or the multiplication of two values of type A, with a continuation that
takes as argument the result of this multiplication, then starts a new
computation.

In the following inductive type definition, the intended meaning of the con-
struct (Mult x y k) is “multiply x with y, then send the result of this multipli-
cation to the continuation k”.

From Module additions.Addition_Chains

Inductive computation {A:Type} : Type :=

| Return (a : A)

| Mult (x y : A) (k : A -> computation).

../theories/html/additions.Addition_Chains.html

304 CHAPTER 17. SMART COMPUTATION OF XN

17.6.1.2 Monadic notation

The following monadic notation makes terms of type computation look like ex-
pressions of a small programming language dedicated to sequences of multipli-
cations. Please look at CPDT [Chl11] for more details on monadic notations in
Coq.

Notation "z '<---' x 'times' y ';' e2 " :=

(Mult x y (fun z => e2))

(right associativity, at level 60).

The computation type family is able to express sharing of intermediate com-
putations. For instance, the computation of 27 depicted in Figure 17.3 is de-
scribed by the following term:

Example comp128 : computation :=

x <--- 2 times 2;

y <--- x times 2;

z <--- y times y ;

t <--- 2 times z ;

Return t.

2

x

y

z

t

2

2

2

2
22

23 23

26

Figure 17.3: The dag associated to a computation of 27

17.6.1.3 Definition

Thanks to the computation type family, we can associate a type to the kind of
computation schemes described in Figures 17.1 and 17.2.

We define addition chains (in short chains) as functions that map any type
A and any value a of type A into a computation on A:

Definition chain := forall A:Type, A -> @computation A.

Thus, terms of type chain describe polymorphic exponentiation algorithms.

17.6. ADDITION CHAINS 305

Example C87 : chain :=

fun A (x : A)=>

x2 <--- x times x ;

x3 <--- x2 times x ;

x6 <--- x3 times x3 ;

x7 <--- x6 times x ;

x10 <--- x7 times x3 ;

x20 <--- x10 times x10 ;

x40 <--- x20 times x20 ;

x80 <--- x40 times x40 ;

x87 <--- x80 times x7 ;

Return x87.

Figure 17.4: A chain for raising x to its 87-th power

For instance, Fig 17.4 shows a definition of the chain of Figure 17.1, for the
exponent 87. Note that, like in PHOAS, bound variables associated with the
intermediary results are Coq variables of type A.

The structure of the definition of types computation and chain suggest that
basic definitions over chain will have the following structure:

• A recursive function on type computation A (for a given type A)

• A main function on type chain that calls the previous one on any A:Type.

For instance, the following function computes the length of any chain, i.e.,
the number of multiplications of the associated computation. Note that the
function chain_length calls the auxiliary function computation_length, with the
variable A instantiated to the singleton type unit.

Any other type in Coq would have fitted our needs, but unit and its unique
inhabitant tt was the simplest solution.

Fixpoint computation_length {A} (a:A) (m : @computation A) : nat :=

match m with

| Mult _ _ k => S (computation_length a (k a))

| _ => 0%nat

end.

Definition chain_length (c:chain) := computation_length tt (c _ tt).

Compute chain_length C87.

= 9

: nat

17.6.2 Chains as a (small) programming language
The chain type can be considered as a tiny programming language dedicated to
compute powers in any EMonoid. Thus, we have to define a semantics for this
language. This semantics is defined in two parts:

306 CHAPTER 17. SMART COMPUTATION OF XN

• A structurally recursive function, — parameterized with an EMonoid M on a
given type A —, that computes the value associated with any computation
on M

• A polymorphic function that takes as arguments a chain c, a type A, an
EMonoid on A, and a value x:A, then executes the computation (c A x).

Fixpoint computation_execute {A:Type} (op: Mult_op A)

(c : computation) :=

match c with

| Return x => x

| Mult x y k => computation_execute op (k (x * y))

end.

Definition computation_eval `{M:@EMonoid A E_op E_one E_eq}

(c : computation) : A :=

computation_execute E_op c.

Definition chain_execute (c:chain) {A} op (a:A) :=

computation_execute op (c A a).

Definition chain_apply

(c:chain) `{M:@EMonoid A E_op E_one E_eq} a : A :=

computation_eval (c A a).

Examples:

The following interactions show how to apply the chain C87 for exponentiation
within two different monoids:

Time Compute chain_apply C87 3%Z.

= 323257909929174534292273980721360271853387%Z

: Z

Finished transaction in 0.006 secs (0.006u,0.s) (successful)

Time Compute chain_apply (M:=M2N) C87 (Build_M2 1 1 1 0)%N.

= {|

c00 := 1100087778366101931%N;

c01 := 679891637638612258%N;

c10 := 679891637638612258%N;

c11 := 420196140727489673%N

|}

: M2 N

Finished transaction in 0.005 secs (0.005u,0.s) (successful)

Project 17.1 Study how to compile efficiently such data structures.

17.7. PROVING A CHAIN’S CORRECTNESS 307

Project 17.2 Define a function which returns the sequence of operations de-
fined by a chain. For instance, the chain C87 of Figure 17.4 can be represented
as a list containing terms of the form (i, Add j k) whenever the associated
computation contains the operation xi = xj × xk.

Compute chain_trace C87.

= [(1, Init); (2, Add 1 1); (3, Add 2 1);

(6, Add 3 3); (7, Add 6 1); (10, Add 7 3);

(20, Add 10 10); (40, Add 20 20);

(80, Add 40 40); (87, Add 80 7)]

: list (positive * info)

Note A first solution (in additions.Trace_exercise) consists in the definition
of a (non-associative) multiplication over a type of trace, and apply the function
chain_execute as if it were computing a power of (1,Init).

17.6.2.1 Chain correctness and optimality

A chain is said to be correct with respect to a positive integer p if its execution
in any monoid computes p-th powers.

Definition chain_correct_nat (n:nat) (c: chain) := n <> 0 /\

forall `(M:@EMonoid A E_op E_one E_eq) (x:A),

chain_apply c x == x ^ n.

Definition chain_correct (p:positive) (c: chain) :=

chain_correct_nat (Pos.to_nat p) c.

Definition 17.1 A chain c is optimal for a given exponent p if its length is
less than or equal to the length of any chain correct for p.

Definition optimal (p:positive) (c : chain) :=

forall c', chain_correct p c' ->

(chain_length c <= chain_length c')%nat.

17.7 Proving a chain’s correctness
In this section, we present various ways of proving that a given chain is correct
w.r.t. a given exponent. First, we just try to apply the definition in Sec-
tion 17.6.2.1, but this method is very inefficient, even for small exponents. In a
second step, we use more sophisticated techniques such as reflection and para-
metricity. Automatic generation of correct chains will be treated in Sect. 17.8
on page 318.

17.7.1 Proof by rewriting
Let us show how to prove the correctness of some chains, using the EMonoid laws
shown in Sect. 17.3.5 on page 293.

../theories/html/additions.Trace_exercise.html

308 CHAPTER 17. SMART COMPUTATION OF XN

Ltac slow_chain_correct_tac :=

match goal with

[|- chain_correct ?p ?c] =>

let A := fresh "A" in

let op := fresh "op" in

let one := fresh "one" in

let eqv := fresh "eqv" in

let M := fresh "M" in

let x := fresh "x"

in split;[discriminate |

unfold c, chain_apply, computation_eval; simpl;

intros A op one eq M x; monoid_simpl M; reflexivity]

end.

Example C7_ok : chain_correct 7 C7.

Proof.

slow_chain_correct_tac.

Qed.

Unfortunately, this approach is terribly inefficient, even for quite small ex-
ponents:

Example C87_ok_slow : chain_correct 87 C87.

Proof.

Time slow_chain_correct_tac.

Finished transaction in 49.927 secs (49.445u,0.079s) (successful)

Qed.

In addition to this big computation time, this approach generates a huge
proof term. Just try to execute the command “Print C87_ok” to get a measure
of its size. In order to understand this poor performance, let us consider an
intermediate subgoal of the previous proof generated after a sequence of un-
foldings and simplifications. This goal is presented in Figure 17.5 on the facing
page.

This inefficiency certainly comes from the cost of setoid rewriting. At every
application of an EMonoid law, the system must verify that the context of this
rewriting is compatible with the equivalence relation associated with the current
EMonoid. The rest of this chapter is devoted to the presentation of more efficient
methods for proving chain correctness.

17.7.2 Correctness proofs by reflection
Instead of letting the tactic rewrite look for contexts in which setoid rewriting is
possible, we propose to use (deterministic) computations for obtaining a “canon-
ical” form for terms generated from a variable x by constructors associated with
monoid multiplication and neutral element.

The reader will find general explanations about proofs by reflection in Coq,
for instance in Chapter 16 of Coq’Art[BC04a] and the numerous examples (in-
cluding the ring tactic) in Coq’s reference manual.

17.7. PROVING A CHAIN’S CORRECTNESS 309

1 goal (ID 506)

A : Type

E_op : Mult_op A

E_one : A

E_eq : Equiv A

M : EMonoid E_op E_one E_eq

x : A

============================

E_eq

(x * x * x * (x * x * x) * x * (x * x * x) *

(x * x * x * (x * x * x) * x * (x * x * x)) *

(x * x * x * (x * x * x) * x * (x * x * x) *

(x * x * x * (x * x * x) * x * (x * x * x))) *

(x * x * x * (x * x * x) * x * (x * x * x) *

(x * x * x * (x * x * x) * x * (x * x * x)) *

(x * x * x * (x * x * x) * x * (x * x * x) *

(x * x * x * (x * x * x) * x * (x * x * x)))) *

(x * x * x * (x * x * x) * x))

(x *

(x *

(x *

(x *

(x *

(x *

(x *

(x *

(x *

(x *

(x *

(x *

(x * (x * (x * ...)))))))))))))))

Figure 17.5: A big goal

17.7.2.1 How does reflection work

Let us consider again the subgoal on Fig. 17.5, the conclusion of which has the
form |a1 == a2|, where |a1| and |a2| are terms of type A. Instead of spending
space and time in setoid rewritings, we would like to normalize the terms |a1|
and |a2| and verify that the associated normal forms are equal.

Defining such a normalization function is possible on an inductive type.
The following type describes expressions composed of monoid operations and
inhabitants of a given type A.

310 CHAPTER 17. SMART COMPUTATION OF XN

(** Binary trees of multiplications over A *)

Inductive Monoid_Exp (A:Type) : Type :=

Mul_node (t t' : Monoid_Exp A) | One_node | A_node (a:A).

Arguments Mul_node {A} _ _.

Arguments One_node {A} .

Arguments A_node {A} _ .

Thus, the main steps of a correctness proof of a given chain, e.g., C87 will
be the following ones:

1. generate a subgoal as in Fig. 17.5 on the preceding page,

2. express each term of the equivalence as the image of a term of type
Monoid_Exp A,

3. normalize both terms and verify that their normal forms are equal.

The rest of this section is devoted to the definition of the normalization
function on Monoid_Exp A, and the proofs of lemmas that link equivalence on
type A and equality of normal forms of terms of type Monoid_Exp A.

17.7.2.2 Linearization function

The following functions help to transform any term of type Monoid_Exp A into
a flat “normal form”.

(** Linearization functions *)

Fixpoint flatten_aux {A:Type}(t fin : Monoid_Exp A)

: Monoid_Exp A :=

match t with

Mul_node t t' => flatten_aux t (flatten_aux t' fin)

| One_node => fin

| x => Mul_node x fin

end.

Fixpoint flatten {A:Type} (t: Monoid_Exp A)

: Monoid_Exp A :=

match t with

| Mul_node t t' => flatten_aux t (flatten t')

| One_node => One_node

| X => Mul_node X One_node

end.

Compute

fun x y z t : nat =>

flatten (Mul_node (Mul_node (A_node x) (A_node y))

(Mul_node (A_node z) (A_node t))).

17.7. PROVING A CHAIN’S CORRECTNESS 311

= fun x y z t : nat =>

Mul_node (A_node x)

(Mul_node (A_node y)

(Mul_node (A_node z)

(Mul_node (A_node t) One_node)))

: nat -> nat -> nat -> nat -> Monoid_Exp nat

17.7.2.3 Interpretation function

The function eval maps any term of type Monoid_Exp A into a term of type A.

Function eval {A:Type} {op one eqv}

(M: @EMonoid A op one eqv)

(t: Monoid_Exp A) : A :=

match t with

Mul_node t1 t2 => (eval M t1 * eval M t2)%M

| One_node => one

| A_node a => a

end.

The following two lemmas relate the linearization function flatten with the
interpretation function eval.

Lemma flatten_valid `(M: @EMonoid A op one eqv):

forall t , eval M t == eval M (flatten t).

Lemma flatten_valid_2 `(M: @EMonoid A op one eqv):

forall t t' , eval M (flatten t) == eval M (flatten t') ->

eval M t == eval M t'.

17.7.2.4 Transforming a multiplication into a tree

Let us now build a tool for building terms of type (Monoid_Exp A) out of terms
of type A containing multiplications of the form (_ * _)%M and the variable one.
In fact, what we want to define is an inverse of the function flatten.

Since mult_op is not a constructor (see Sect. 17.3.1), the transformation of
a product of type A into a term of type Monoid_Exp A is done with the help of a
tactic:

Ltac model A op one v :=

match v with

| (?x * ?y)%M => let r1 := model A op one x

with r2 :=(model A op one y)

in constr:(@Mul_node A r1 r2)

| one => constr:(@One_node A)

| ?x => constr:(@A_node A x)

end.

For instance, the term (x * x * x * (x * x * x) * x) is transformed by
model in the following term of type Monoid_Exp A

312 CHAPTER 17. SMART COMPUTATION OF XN

(eval M

(Mul_node

(Mul_node

(Mul_node (Mul_node (A_node x) (A_node x)) (A_node x))

(Mul_node (Mul_node (A_node x) (A_node x)) (A_node x)))

(A_node x)))

17.7.3 Reflection tactic
The tactic monoid_eq_A converts a goal of the form (E_eq X Y), where X and Y
are terms of type A, into (E_eq (eval M (model X)) (eval M (model Y))). This
last goal is intended to be solved thanks to the lemma flatten_valid_2.

Ltac monoid_eq_A A op one E_eq M :=

match goal with

| [|- E_eq ?X ?Y] =>

let tX := model A op one X with

tY := model A op one Y in

(change (E_eq (eval M tX) (eval M tY)))

end.

17.7.3.1 Main reflection tactic

The tactic reflection_correct_tac tries to prove a chain’s correctness by a com-
parison of two terms of type Monoid_Exp A: one being obtained from the chain’s
definition, the other one by expansion of the naive exponentiation definition.

Ltac reflection_correct_tac :=

match goal with

[|- chain_correct ?n ?c] =>

split; [try discriminate |

let A := fresh "A"

in let op := fresh "op"

in let one := fresh "one"

in let E_eq := fresh "eq"

in let M := fresh "M"

in let x := fresh "x"

in (try unfold c); unfold chain_apply;

simpl; red; intros A op one E_eq M x;

unfold computation_eval;simpl;

monoid_eq_A A op one E_eq M;

apply flatten_valid_2;try reflexivity

]

end.

17.7.3.2 Example

The following dialogue clearly shows the efficiency gain over naive setoid rewrit-
ing.

17.7. PROVING A CHAIN’S CORRECTNESS 313

Example C87_ok : chain_correct 87 C87.

Proof.

Time reflection_correct_tac.

Finished transaction in 0.033 secs (0.032u,0.s) (successful)

Qed.

This tactic is not adapted to much bigger exponents. In
Module Euclidean_Chains, for instance, we tried to apply this tactic for prov-
ing the correctness of a chain associated with the exponent 45319. We had to
interrupt the prover, which was trying to build a linear tree of 2 × 45319 + 1
nodes! Indeed, using reflection_correct_tac is like doing a symbolic evaluation
of an inefficient (linear) exponentiation algorithm.

In the next section, we present a solution that avoids doing such a lot of
computations.

17.7.4 Chain correctness for —practically — free!

17.7.4.1 About parametricity

Let us now present another tactic for proving chain correctness, in the tradi-
tion of works on parametricity and its use for proving properties on programs.
Strachey [Str00] explores the nature of parametric polymorphism: “Polymorphic
functions behave uniformly for all types” then Reynolds [Rey83] formalizes this
notion through binary relations. Wadler [Wad89], then Cohen et al. [CDM13]
use this relation for deriving theorems about functions that operate on para-
metric polymorphic types.

Let us look again at the definitions of type family computation and the type
chain:

Inductive computation {A:Type} : Type :=

| Return (a : A)

| Mult (x y : A) (k : A -> computation).

Definition chain := forall A:Type, A -> @computation A.

Let c be a closed term of type chain; c is of the form
fun (A:Type)(a:A) => ta, where ta is a term of type @computation A. Obviously,
in every subterm of ta of type A, the two first arguments of constructor Mult

or the argument of Return are either a or a variable introduced as the formal
argument of a continuation k. In effect, there is no other way to build terms of
type A in the considered context.

Marc Lasson’s paramcoq plug-in (available as opam package coq-paramcoq)
generates a family of binary relations definitions from computation’s definition.

../theories/html/additions.Euclidean_Chains.html

314 CHAPTER 17. SMART COMPUTATION OF XN

Parametricity computation.

Print computation_R.

Inductive

computation_R (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)

: computation -> computation -> Type :=

computation_R_Return_R : forall (a₁ : A₁)

(a₂ : A₂),

A_R a₁ a₂ ->

computation_R A₁ A₂ A_R

(Return a₁) (Return a₂)

| computation_R_Mult_R : forall (x₁ : A₁) (x₂ : A₂),

A_R x₁ x₂ ->

forall (y₁ : A₁) (y₂ : A₂),

A_R y₁ y₂ ->

forall

(k₁ : A₁ -> computation)

(k₂ : A₂ -> computation),

(forall (H : A₁) (H0 : A₂),

A_R H H0 ->

computation_R A₁ A₂ A_R

(k₁ H) (k₂ H0)) ->

computation_R A₁ A₂ A_R

(z <--- x₁ times y₁; k₁ z)

(z <--- x₂ times y₂; k₂ z).

Arguments computation_R (A₁ A₂)%type_scope

A_R%function_scope _ _

Arguments computation_R_Return_R (A₁ A₂)%type_scope

A_R%function_scope a₁ a₂ a_R

Arguments computation_R_Mult_R (A₁ A₂)%type_scope

A_R%function_scope x₁ x₂ x_R y₁ y₂ y_R

(k₁ k₂ k_R)%function_scope

Let A and B be two types, and R : A→B→Type a relation. Two computa-
tions cA: @computation A and cB: @computation B are related w.r.t. computation_R

if every pair of arguments of Mult and Return at the same position are related
w.r.t. R.

17.7.4.2 Definition

A chain c is parametric if it has the same behavior for any pair of types A and
B, any relation R between A and B and any R-related pair of arguments a and
b:

Definition parametric (c:chain) :=

forall A B (R: A -> B -> Type) (a:A) (b:B),

R a b -> computation_R A B R (c A a) (c B b).

17.7.4.3 How to use these definitions?

Let us use parametricity for proving easily a given chain’s correctness. In other
words, let c be a chain and p:positive be a given exponent. Consider some

17.7. PROVING A CHAIN’S CORRECTNESS 315

instance of EMonoid over a type A. We want to prove that the application of the
chain c to any value a of type A returns the value ap.

We first use Coq’s computation facilities for “guessing” the exponent asso-
ciated with any given chain. It suffices to instantiate “monoid multiplication”
with addition on positive integers.

Definition the_exponent_nat (c:chain) : nat :=

chain_apply c (M:=Natplus) 1%nat.

Definition the_exponent (c:chain) : positive :=

chain_execute c Pos.add 1%positive.

Compute the_exponent C87.

= 87%positive

: positive

We show how to prove that a given chain c, applied to any a, really computes
ap, where p = the_exponent c. Parametricity allows us to compare executions
on any monoidM with executions on NatPlus. Let us consider the mathematical
relation {(x, n) ∈M × N | 0 < n ∧ x = an}.

Definition power_R (a:A) :=

fun (x:A)(n:nat) => n <> 0 /\ x == a ^ n.

First, we prove the following lemma, that relates computation_R with the
result of the executions of the corresponding computations:

Lemma power_R_is_a_refinement (a:A) :

forall(gamma : @computation A)

(gamma_nat : @computation nat),

computation_R _ _ (power_R a) gamma gamma_nat ->

power_R a (computation_eval gamma)

(computation_eval (M:= Natplus) gamma_nat).

Thus, if c:chain is parametric, this refinement lemma allows us to prove a
correctness result:

Lemma param_correctness_nat (c: chain) :

parametric c ->

chain_correct_nat (the_exponent_nat c) c.

A similar result can be proven with the exponent in positive. First we
instantiate the parameter R of computation_R, with the relation that links the
representations of natural numbers on respective types nat and positive. Then
we use our lemmas for rewriting under the assumption that the considered chain
is parametric. Please note how our approach is related with data refinement (see
also [CDM13]). The reader may also consult a survey by D. Brown on the most
important contributions to the notion of parametricity [Bro10].

Lemma exponent_pos2nat : forall c: chain,

parametric c ->

the_exponent_nat c = Pos.to_nat (the_exponent c).

316 CHAPTER 17. SMART COMPUTATION OF XN

Lemma exponent_pos_of_nat :

forall c: chain, parametric c ->

the_exponent c = Pos.of_nat (the_exponent_nat c).

Lemma param_correctness :

forall (p:positive) (c:chain),

p = the_exponent c -> parametric c ->

chain_correct p c.

Lemma param_correctness suggests us a method for verifying that a given
chain c is correct w.r.t. some positive exponent p:

1. Verify that c is parametric.

2. Verify that p is equal to (the_exponent c).

17.7.4.4 How to prove a chain’s parametricity

Despite the apparent complexity of computation_R’s definition, it is very simple
to prove that a given chain is parametric. The following tactics proceed as
follows:

1. Given a chain c, consider two types A and B, and any relation R:A->B->Prop,

2. Push into the context declarations of a:A, b:B and an hypothesis assuming
R a b.

3. Then the tactic crosses in parallel the terms (c A a) and (c B b) (of the
same structure),

• On a pair of terms of the form Mult xA yA (fun zA => tA) and
Mult xB yB (fun zB => tB), the tactic checks whether R xA xB and
R yA yB are already assumed in the context, then pushes into the con-
text the declaration of zA and zB and the hypothesis
Hz: R zA zB, then crosses the terms tA and tB

• On a pair of terms of the form (Return xA) and (Return xB), the tactic
just checks whether (R xA xB) is assumed.

The tactic itself is simpler than its explanation.

Ltac parametric_tac :=

match goal with [|- parametric ?c] =>

red ; intros;

repeat (right;[assumption | assumption |]); left; assumption

end.

Example P87 : parametric C87.

Proof.

Time parametric_tac.

Finished transaction in 0.005 secs (0.004u,0.s) (successful)

Qed.

17.7. PROVING A CHAIN’S CORRECTNESS 317

17.7.4.5 Proving a chain’s correctness

Finally, for proving that a given chain c is correct with respect to an ex-
ponent p, it suffices to check that c is parametric, and to apply the lemma
param_correctness. The reader will note how this computation-less method is
much more efficient than our reflection tactic.

Ltac param_chain_correct :=

match goal with

[|- chain_correct ?p ?c] =>

let H := fresh "H" in

assert (p = the_exponent c) by reflexivity;

apply param_correctness;[trivial | parametric_tac]

end.

Lemma C87_ok' : chain_correct 87 C87.

Time param_chain_correct.

Finished transaction in 0.004 secs (0.004u,0.s) (successful)

Qed.

17.7.4.6 Remark

For the reasons exposed in Section 17.7.4.1 on page 313, it seems obvious that
any well-written chain is parametric. Unfortunately, we cannot prove this prop-
erty in Coq, for instance by induction on c, since chain is a product type and
not an inductive type.

Definition any_chain_parametric : Type :=

forall c:chain, parametric c.

Goal any_chain_parametric.

Proof.

intros c A B R a b ; induction (c A a); destruct (c B b).

c: chain

A, B: Type

R: A -> B -> Type

a: A

b: B

a0: A

a1: B

R a b -> computation_R A B R (Return a0) (Return a1)

Abort.

Given this situation, we could admit (as an axiom) that any chain is para-
metric. Nevertheless, if a chain is under the form of a closed term, using
parametric_tac is so efficient than we prefer to avoid a shameful introduction
of an axiom in our development.

318 CHAPTER 17. SMART COMPUTATION OF XN

17.8 Certified chain generators
In this section, we are interested in the correct by construction paradigm. We
just want to give a positive exponent to Coq and get a (hopefully) correct and
efficient chain for this exponent.

We first define the notion of chain generator, then present a certified gen-
erator that simulates the binary exponentiation algorithm. Last, we present a
better chain generator based on integer division.

17.8.1 Definitions
We call chain generator any function that takes as argument any positive integer
and returns a chain. A generator g is correct it it returns a correct chain for
any exponent.

Definition chain_generator := positive -> chain.

Definition correct_generator (gen : positive -> chain) :=

forall p, chain_correct p (gen p).

Correct generators can be used for computing powers on the fly, thanks to
the following functions:

Definition cpower_pos (g : chain_generator) p

`{M:@EMonoid A E_op E_one E_eq} a :=

chain_apply (g p) (M:=M) a.

Definition cpower (g : chain_generator) n

`{M:@EMonoid A E_op E_one E_eq} a :=

match n with 0%N => E_one

| Npos p => cpower_pos g p a

end.

Note also that the use of chain generators is independent from the techniques
presented in Sect. 17.7: Designing an efficient and correct chain generator may
be a long and hard task. On the other hand, once a generator is certified, we
are assured of the correctness of all its outputs. Finally, we say that a generator
g is optimal if it returns chains whose length are less than or equal to any chain
returned by any correct generator:

Definition optimal_generator (g : positive -> chain) :=

forall p:positive, optimal p (g p).

17.8.2 The binary chain generator
Let us reinterpret the binary exponentiation algorithms in the framework of
addition chains. Instead of directly computing xn for some base x and exponent
n, we build chains that describe the computations associated with the binary
exponentiation method. Not surprisingly, this chain generation will be described
in terms of recursive functions, once the underlying monoid is fixed.

As for the “classical” binary exponentiation algorithm, we define an auxiliary
computation generator for the product of an accumulator a with an arbitrary
power of some value x.

17.8. CERTIFIED CHAIN GENERATORS 319

Fixpoint axp_scheme {A} p : A -> A -> @computation A :=

match p with

| xH => (fun a x => y <--- a times x ; Return y)

| xO q => (fun a x => x2 <--- x times x ; axp_scheme q a x2)

| xI q => (fun a x => ax <--- a times x ;

x2 <--- x times x ;

axp_scheme q ax x2)

end.

Fixpoint bin_pow_scheme {A} (p:positive) : A -> @computation A:=

match p with | xH => fun x => Return x

| xI q => fun x => x2 <--- x times x; axp_scheme q x x2

| xO q => fun x => x2 <--- x times x ; bin_pow_scheme q x2

end.

Definition binary_chain (p:positive) : chain :=

fun A => bin_pow_scheme p.

Compute binary_chain 87.

= fun (A : Type) (x : A) =>

x0 <--- x times x;

x1 <--- x times x0;

x2 <--- x0 times x0;

x3 <--- x1 times x2;

x4 <--- x2 times x2;

x5 <--- x4 times x4;

x6 <--- x3 times x5;

x7 <--- x5 times x5;

x8 <--- x7 times x7;

x9 <--- x6 times x8; Return x9

: chain

17.8.2.1 Proof of binary_chain’s correctness

Let us now prove that binary_chain always returns correct chains. First, due
to the structure of this generator’s definition, we study the properties of the
auxiliary functions that operate on a given monoid M .

Section binary_power_proof.

Variables (A: Type)

(E_op : Mult_op A)

(E_one : A)

(E_eq: Equiv A).

Context (M : EMonoid E_op E_one E_eq).

Existing Instance Eop_proper.

Lemma axp_correct : forall p a x,

320 CHAPTER 17. SMART COMPUTATION OF XN

computation_eval (axp_scheme p a x) ==

a * x ^ (Pos.to_nat p).

Proof.

induction p.

(* ... *)

Lemma binary_correct :

forall p x,

computation_eval (bin_pow_scheme p (A:=A) x) ==

x ^ (Pos.to_nat p).

Proof.

intros p ; induction p.

(* ... *)

End binary_power_proof.

Lemma binary_generator_correct : correct_generator binary_chain.

Proof.

red;unfold chain_correct; intros; unfold binary_chain, chain_apply;

split;[auto with chains| intros; apply binary_correct].

Qed.

17.8.2.2 The binary method is not optimal

It is easy to prove by contradiction that the binary method is not the most
efficient for computing powers.

Section non_optimality_proof.

Hypothesis binary_opt : optimal_generator binary_chain.

Compute chain_length (binary_chain 87).

= 10

: nat

Compute chain_length C87.

= 9

: nat

Lemma binary_generator_not_optimal : False.

Proof.

generalize (binary_opt _ _ C87_ok); compute; lia.

Qed.

End non_optimality_proof.

Exercise 17.3 Prove that for any positive integer p, the length of any optimal
chain for p is less than twice the number of digits of the binary representation
of p.

17.9. EUCLIDEAN CHAINS 321

17.9 Euclidean Chains
In this section, we present an efficient chain generator. The chains built by
this generator are never longer than the chains built by the binary generator.
Moreover, for an infinite number of exponents, the chains it builds are strictly
shorter than the chain returned by binary_chain. Euclidean chains are based
on the following idea:

For generating a chain that computes xn, one may choose some
natural number 0 < p < n, and build a chain that computes first xp
then uses this value for computing xn.

For instance, a computation of x42 can be decomposed into a computation
of y = x3, then a computation of y14. The efficiency of the chain built with this
methods depends heavily on the choice of p. See [BCHM95] for details.

Considering chain generators and their correctness, we may consider the dual
of decomposition of exponents: we would like to write composable correct chain
generators. For instance, we want to build some object that, “composed” with
any correct chain for n, returns a correct chain for 3n.

17.9.0.0.1 Note: All the Coq material described in this section is available
on Module additions/Euclidean_Chains.v

17.9.1 Chains and continuations : f-chains
Please consider the following small example:

Example C3 : chain :=

fun (A:Type) (x:A) =>

x2 <--- x times x;

x3 <--- x2 times x;

Return x3.

The execution of this chain on some value x : A stops after computing x3,
because of the Return “statement”. However, we would like to compose the
instructions of C3 with a chain for another exponent n, in order to generate a
chain for the exponent 3× n.

The solution we present is based on functional programming and the concept
of continuation.

17.9.1.1 Type definition of f-chains

Let us consider incomplete or open chains. Such an object waits for another
chain to resume a computation.

Figure 17.6 represents an f-chain associated with the exponent 3, as a dag
with an input and one output the edges of which are depicted as thick arrows.

x x2 x3

Figure 17.6: Graphical representation of F3

../theories/html/additions.Euclidean_Chains.html

322 CHAPTER 17. SMART COMPUTATION OF XN

In other words, this kind of objects can be considered as functions from
chains to chains. So, we called their type Fchain.

First, we define a type of continuations, i.e., functions that wait for some
value x, then build a computation for raising x to some given exponent. An
f-chain is just a polymorphic function that combines a continuation and an
element into a computation.

Definition Fkont (A:Type) := A -> @computation A.

Definition Fchain := forall A, Fkont A -> A -> @computation A.

17.9.1.2 Examples

Let us define a chain for computing the cube of some x, then sending the result
to a continuation k.

Definition F3 : Fchain :=

fun A k (x:A) =>

y <--- x times x ;

z <--- y times x ;

k z.

Any f-chain can be converted into a chain by the help of the following func-
tion:

Definition F2C (f : Fchain) : chain :=

fun (A:Type) => f A Return .

Compute the_exponent (F2C F3).

= 3

: positive

In the rest of this chapter, we will use two other f-chains, respectively asso-
ciated with the exponents 1 and 2. Chains F1, F2 and F3 will form a basis to
generate chains for many exponents by composition of correct functions.

Definition F1 : Fchain :=

fun A k (x:A) => k x.

Definition F2 : Fchain :=

fun A k (x:A) =>

y <--- x times x ;

k y.

17.9.1.3 F-chain application and composition

The following definition allows us to consider any value f of type Fchain as a
function of type chain → chain.

Definition Fapply (f : Fchain) (c: chain) : chain :=

fun (A:Type) (x: A) => f A (c A) x.

17.9. EUCLIDEAN CHAINS 323

In a similar way, composition of f-chains is easily defined (see Figure 17.7).

Definition Fcompose (f1 f2: Fchain) : Fchain :=

fun A k x => f1 A (fun y => f2 A k y) x.

Lemma F1_neutral_l : forall f, Fcompose F1 f = f.

Proof. reflexivity. Qed.

Lemma F1_neutral_r : forall f, Fcompose f F1 = f.

Proof. reflexivity. Qed.

f1 f2

Figure 17.7: Composition of f-chains f1 and f2 (Fcompose)

17.9.1.4 Examples

The following examples show that the apparent complexity of the previous def-
inition is counterbalanced with the simplicity of using Fapply and Fcompose.

Example F9 := Fcompose F3 F3.

Compute F9.

= fun (A : Type) (x : Fkont A) (x0 : A) =>

x1 <--- x0 times x0;

x2 <--- x1 times x0;

x3 <--- x2 times x2; x4 <--- x3 times x2; x x4

: Fchain

Remark F9_correct :chain_correct 9 (F2C F9).

param_chain_correct.

Qed.

x x2 x3 y y2 y3
y := x

Figure 17.8: Composition of F-chains: F9

Using structural recursion and the operator FCompose, we build a chain for
any exponent of the form 2n:

324 CHAPTER 17. SMART COMPUTATION OF XN

Fixpoint Fexp2_of_nat (n:nat) : Fchain :=

match n with O => F1

| S p => Fcompose F2 (Fexp2_of_nat p)

end.

Definition Fexp2 (p:positive) : Fchain :=

Fexp2_of_nat (Pos.to_nat p).

Compute Fexp2 4.

= fun (A : Type) (x : Fkont A) (x0 : A) =>

x1 <--- x0 times x0;

x2 <--- x1 times x1;

x3 <--- x2 times x2; x4 <--- x3 times x3; x x4

: Fchain

Compute the_exponent (F2C (Fexp2 4)).

= 16

: positive

17.9.2 F-chain correctness
Let f be some term of type Fchain, and n:nat. We would like to say that f is
correct w.r.t. n:nat if for any continuation k and a, the application of f to k

and a computes k(an).

Module Bad.

Definition Fchain_correct (n:nat) (fc : Fchain) :=

forall A `(M : @EMonoid A op E_one E_equiv) k (a:A),

computation_execute op (fc A k a)==

computation_execute op (k (a ^ n)).

Let us now try to prove that F3 is correct w.r.t. 3.

Theorem F3_correct : Fchain_correct 3 F3.

Proof.

intros A op E_one E_equiv M k a ; cbn.

monoid_simpl M.

A: Type

op: Mult_op A

E_one: A

E_equiv: Equiv A

M: EMonoid op E_one E_equiv

k: Fkont A

a: A

H: Proper (equiv ==> equiv ==> equiv) op

computation_execute op (k (a * a * a)) ==

computation_execute op (k (a * (a * (a * E_one))))

17.9. EUCLIDEAN CHAINS 325

Abort.

End Bad.

This failure is due to a lack of an assumption that the continuation k is proper
with respect to the equivalence equiv. Thus, Coq is unable to infer from the
equivalence (a * a * a) == (a * (a * (a * E_one)))

that (k (a * a * a)) and (k (a * (a * (a * E_one)))) are equivalent compu-
tations.

17.9.2.1 Definition:

A continuation k:Fkont A is proper if, whenever x == y holds, the computations
(k x) and (k y) are equivalent.

Class Fkont_proper

`(M : @EMonoid A op E_one E_equiv) (k: Fkont A) :=

Fkont_proper_prf:

Proper (equiv ==> computation_equiv op E_equiv) k.

We are now able to improve our definition of correctness, taking only proper
continuations into account.

Definition Fchain_correct_nat (n:nat) (f : Fchain) :=

forall A `(M : @EMonoid A op E_one E_equiv) k

(Hk :Fkont_proper M k)

(a : A) ,

computation_execute op (f A k a) ==

computation_execute op (k (a ^ n)).

Definition Fchain_correct (p:positive) (f : Fchain) :=

Fchain_correct_nat (Pos.to_nat p) f.

17.9.2.2 Examples

Let us show manual correctness proofs of some small f-chains:

Lemma F1_correct : Fchain_correct 1 F1.

Proof.

intros until M ; intros k Hk a ; unfold F1; simpl.

apply Hk; monoid_simpl M; reflexivity.

Qed.

While proving F3’s correctness, we will have to apply the properness hypoth-
esis on k:

Lemma F3_correct : Fchain_correct 3 F3.

Proof.

intros until M; intros k Hk a; simpl.

326 CHAPTER 17. SMART COMPUTATION OF XN

A: Type

op: Mult_op A

E_one: A

E_equiv: Equiv A

M: EMonoid op E_one E_equiv

k: Fkont A

Hk: Fkont_proper M k

a: A

computation_execute op (k (a * a * a)) ==

computation_execute op (k (a * (a * (a * E_one))))

apply Hk.

A: Type

op: Mult_op A

E_one: A

E_equiv: Equiv A

M: EMonoid op E_one E_equiv

k: Fkont A

Hk: Fkont_proper M k

a: A

a * a * a == a * (a * (a * E_one))

monoid_simpl M; reflexivity.

Qed.

Correctness of F2 is proved the same way:

Lemma F2_correct : Fchain_correct 2 F2.

Proof.

intros until M; intros k Hk a; simpl;

apply Hk; monoid_simpl M; reflexivity.

Qed.

17.9.2.3 Composition of correct f-chains: a first attempt

We are now looking for a way to generate correct chains for any positive number.
It seems obvious that we could use Fcompose for building a correct f-chain for
n× p by composition of a correct f-chain for n and a correct f-chain for p. Let
us try to certify this construction:

Module Bad2.

Lemma Fcompose_correct :

forall f1 f2 n1 n2,

Fchain_correct n1 f1 ->

Fchain_correct n2 f2 ->

Fchain_correct (n1 * n2) (Fcompose f1 f2).

Proof.

(* ... *)

17.9. EUCLIDEAN CHAINS 327

intros x y Hxy; red.

Hk: Fkont_proper M k

a, x, y: A

Hxy: x == y

computation_execute op (f2 A k x) ==

computation_execute op (f2 A k y)

No hypothesis guarantees us that the execution of f2 respects the equivalence
x == y.

Abort.

End Bad2.

Thus, we need to define also a notion of properness for f-chains. A first
attempt would be :

Module Bad3.

Class Fchain_proper (fc : Fchain) := Fchain_proper_bad_prf :

forall `(M : @EMonoid A op E_one E_equiv) k ,

Fkont_proper M k ->

forall x y, x == y ->

@computation_equiv _ op E_equiv

(fc A k x)

(fc A k y).

This definition is powerful enough for proving that properness is preserved
by composition:

#[global] Instance Fcompose_proper (f1 f2 : Fchain)

(_ : Fchain_proper f1)

(_ : Fchain_proper f2) :

Fchain_proper (Fcompose f1 f2).

Proof.

intros until M;intros k Hk x y Hxy; unfold Fcompose;cbn.

apply (H _ _ _ _ M); auto.

intros u v Huv;apply (H0 _ _ _ _ M);auto.

Qed.

Nevertheless, we had to throw away this definition of properness: In further
developments (Sect. 17.9.4 on page 329) we shall have to compare executions of
the form fc A kx x and fc A ky y where x == y and kx and ky are “equivalent”
but not convertible continuations.

End Bad3.

17.9.2.4 A better definition of properness

The following generalization will allow us to consider continuations that are
different (according to Leibniz equality) but lead to equivalent computations
and results.

328 CHAPTER 17. SMART COMPUTATION OF XN

Definition Fkont_equiv `(M : @EMonoid A op E_one E_equiv)

(k k': Fkont A) :=

forall x y : A, x == y ->

computation_equiv op E_equiv (k x) (k' y).

Class Fchain_proper (fc : Fchain) := Fchain_proper_prf :

forall `(M : @EMonoid A op E_one E_equiv) k k' ,

Fkont_proper M k -> Fkont_proper M k' ->

Fkont_equiv M k k' ->

forall x y, x == y ->

@computation_equiv _ op E_equiv

(fc A k x)

(fc A k' y).

17.9.2.5 Examples

The definition above allows us to build simply several instances of the class
Fchain_proper:

#[global] Instance F1_proper : Fchain_proper F1.

Proof.

intros until M ; intros k k' Hk Hk' H a b H0; unfold F1; cbn;

now apply H.

Qed.

#[global] Instance F2_proper : Fchain_proper F2.

#[global] Instance F3_proper : Fchain_proper F3.

17.9.3 Correctness of chain composition
The Fcompose operator respects chain correctness and properness.

Lemma Fcompose_correct :

forall fc1 fc2 n1 n2,

Fchain_correct n1 fc1 ->

Fchain_correct n2 fc2 ->

Fchain_proper fc2 ->

Fchain_correct (n1 * n2) (Fcompose fc1 fc2).

#[global] Instance Fcompose_proper (fc1 fc2: Fchain)

(_ : Fchain_proper fc1)

(_ : Fchain_proper fc2) :

Fchain_proper (Fcompose fc1 fc2).

Using chain composition, we get a correct and proper chain for any exponent
of the form 2n.

Lemma Fexp2_correct (p:positive) :

Fchain_correct (2 ^ p) (Fexp2 p).

17.9. EUCLIDEAN CHAINS 329

#[global] Instance Fexp2_proper (p:positive) : Fchain_proper (Fexp2 p).

We are now able to build chains for any exponent of the form 2k × 3p, using
Fcompose. Les us look at a simple example:

#[global] Hint Resolve F1_correct F1_proper

F3_correct F3_proper Fcompose_correct Fcompose_proper

Fexp2_correct Fexp2_proper : chains.

Example F144: {f : Fchain | Fchain_correct 144 f /\

Fchain_proper f}.

Proof.

change 144 with ((3 * 3) * (2 ^ 4))%positive.

{f : Fchain

| Fchain_correct (3 * 3 * 2 ^ 4) f /\ Fchain_proper f}

exists (Fcompose (Fcompose F3 F3) (Fexp2 4)); auto with chains.

Defined.

Compute proj1_sig F144.

= fun (A : Type) (x : Fkont A) (x0 : A) =>

x1 <--- x0 times x0;

x2 <--- x1 times x0;

x3 <--- x2 times x2;

x4 <--- x3 times x2;

x5 <--- x4 times x4;

x6 <--- x5 times x5;

x7 <--- x6 times x6; x8 <--- x7 times x7; x x8

: Fchain

17.9.4 Building chains for two distinct exponents : k-
chains

17.9.4.1 Introduction

Not every chain can be built efficiently with Fcompose. For instance, consider
the exponent n = 23 = 3 + 24 + 22.

One may attempt to define a new operator for combining f-chains for n and
p into an f-chain for n+ p.

330 CHAPTER 17. SMART COMPUTATION OF XN

Definition Fplus (f1 f2 : Fchain) : Fchain :=

fun A k x => f1 A

(fun y =>

f2 A

(fun z => t <--- z times y; k t) x) x.

Example F23 := Fplus F3 (Fplus (Fexp2 4) (Fexp2 2)).

Lemma F23_ok : chain_correct 23 (F2C F23).

Proof.

param_chain_correct.

Qed.

Unfortunately, our construct is still very inefficient, since it results in dupli-
cation of computations, as shown by the normal form of F23.

Compute F23.

= fun (A : Type) (x : Fkont A) (x0 : A) =>

x1 <--- x0 times x0;

x2 <--- x1 times x0;

x3 <--- x0 times x0;

x4 <--- x3 times x3;

x5 <--- x4 times x4;

x6 <--- x5 times x5;

x7 <--- x0 times x0;

x8 <--- x7 times x7;

x9 <--- x8 times x6;

x10 <--- x9 times x2; x x10

: Fchain

We observe that the variables x3 and x7 are useless, since they will have the
same value as x1. Likewise, computing x8 (same value as x4) is a waste of time.

A better scheme for computing x23 would be the following one:

1. Compute x, x2, x3, and x6 = (x3)
2, then x7,

2. Compute x10 = x7 × x3, then x20

3. Finally, return x23 = x20 × x3

In fact, the first step of this sequence computes two values: x7 and x3, that
are re-used by the rest of the computation.

Like in some programming languages that allow “multiple values”, like Scheme
and Common Lisp, we can express this feature in terms of continuations that ac-
cept two arguments. Thus, we extend our previous definitions to chains that
return two different powers of their argument3.

3The name Kchain comes from previous versions of this development. It may be changed
later.

17.9. EUCLIDEAN CHAINS 331

(** Continuations with two arguments *)

Definition Kkont A:= A -> A -> @computation A.

(** CPS chain builders for two exponents *)

Definition Kchain := forall A, Kkont A -> A -> @computation A.

17.9.4.2 Examples

The chain k3_1 sends both values x and x3 to its continuation. Likewise, k7_3
“returns” x7 and x3.

Example k3_1 : Kchain := fun A (k:Kkont A) (x:A) =>

x2 <--- x times x ;

x3 <--- x2 times x ;

k x3 x.

Example k7_3 : Kchain := fun A (k:Kkont A) (x:A) =>

x2 <--- x times x;

x3 <--- x2 times x ;

x6 <--- x3 times x3 ;

x7 <--- x6 times x ;

k x7 x3.

x x2 x3
x x3

x

Figure 17.9: Graphical representation of K3_1

x x2 x3 x6 x7
x x7

x3

Figure 17.10: Graphical representation of K7_3

17.9.4.3 Definitions

First, we have to adapt to k-chains our definitions of correctness and properness.

Definition Kkont_proper `(M : @EMonoid A op E_one E_equiv)

(k : Kkont A) :=

Proper (equiv ==> equiv ==> computation_equiv op E_equiv) k .

Definition Kkont_equiv `(M : @EMonoid A op E_one E_equiv)

332 CHAPTER 17. SMART COMPUTATION OF XN

(k k': Kkont A) :=

forall x y : A, x == y -> forall z t, z == t ->

computation_equiv op E_equiv (k x z) (k' y t).

A k-chain is correct with respect to two exponents n and p if it computes
xn and xp for any x in any monoid M .

Definition Kchain_correct_nat (n p : nat) (kc : Kchain) :=

forall (A : Type) (op : Mult_op A) (E_one : A) (E_equiv : Equiv A)

(M : EMonoid op E_one E_equiv)

(k : Kkont A),

Kkont_proper M k ->

forall (a : A) ,

computation_execute op (kc A k a) ==

computation_execute op (k (a ^ n) (a ^ p)).

Definition Kchain_correct (n p : positive) (kc : Kchain) :=

Kchain_correct_nat (Pos.to_nat n) (Pos.to_nat p) kc.

Class Kchain_proper (kc : Kchain) :=

Kchain_proper_prf :

forall `(M : @EMonoid A op E_one E_equiv) k k' x y ,

Kkont_proper M k ->

Kkont_proper M k' ->

Kkont_equiv M k k' ->

E_equiv x y ->

computation_equiv op E_equiv (kc A k x) (kc A k' y).

17.9.4.4 Example

For instance, let us prove that k7_3 is proper and correct for the exponents 7
and 3.

#[global] Instance k7_3_proper : Kchain_proper k7_3.

Proof.

intros until M; intros; red; unfold k7_3; cbn;

add_op_proper M H3; apply H1; rewrite H2; reflexivity.

Qed.

Lemma k7_3_correct : Kchain_correct 7 3 k7_3.

Proof.

intros until M; intros; red; unfold k7_3; simpl.

apply H; monoid_simpl M; reflexivity.

Qed.

17.9.5 Systematic construction of correct f-chains and k-
chains

We are now ready to define various operators on f- and k-chains, and prove
these operators preserve correctness and properness. We will also show that

17.9. EUCLIDEAN CHAINS 333

these operators allow to generate easily correct chains for any positive exponent.
They will be used to generate chains for numbers of the form n = bq + r where
0 ≤ r < b, assuming the previous construction of correct chains for r, b and q.
For instance, Figure 17.11 shows how K7_3 is built as a composition of K3_1 and
F2.

K3_1
x

F2
x3

x3

×x6

x

x7

Figure 17.11: Decomposition of K7_3

17.9.5.1 Conversion from k-chains into f-chains

Any k-chain for n and p can be converted into an f-chain, just by applying it to
a continuation that ignores its second argument.

◦
kn,p

x xn

Figure 17.12: The K2F (knp) construction

Definition K2F (knp : Kchain) : Fchain :=

fun A (k:Fkont A) => knp A (fun y _ => k y).

Lemma K2F_correct :

forall kc n p, Kchain_correct n p kc ->

Fchain_correct n (K2F kc).

#[global] Instance K2F_proper (kc : Kchain)(_ : Kchain_proper kc) :

Fchain_proper (K2F kc).

17.9.5.2 Construction associated with Euclidean division with a pos-
itive rest

Let n = bq + r, with 0 < r < b. Then, for any x, xn = (xb)q × xr. Thus, we
can compose an chain that computes xb and xr with a chain that raises any y
to its q-th power for obtaining a chain that computes xn.

Definition KFK (kbr : Kchain) (fq : Fchain) : Kchain :=

fun A k a =>

kbr A (fun xb xr =>

fq A (fun y =>

z <--- y times xr; k z xb) xb) a.

334 CHAPTER 17. SMART COMPUTATION OF XN

Kb,r
x

Fq
xb

xb

×

xr

xbq xbq+r

Figure 17.13: The KFK combinator

Lemma KFK_correct :

forall (b q r : positive) (kbr : Kchain) (fq : Fchain),

Kchain_correct b r kbr ->

Fchain_correct q fq ->

Kchain_proper kbr ->

Fchain_proper fq ->

Kchain_correct (b * q + r) b (KFK kbr fq).

Check KFK_proper.

KFK_proper

: forall (kbr : Kchain) (fq : Fchain),

Kchain_proper kbr ->

Fchain_proper fq -> Kchain_proper (KFK kbr fq)

17.9.5.3 Ignoring the remainder

Let n = bq + r, with 0 < r < b. The following construction computes xr and
xb, then xbq, and finally sends xbq+r to the continuation, throwing away xb.

Kb,r
x

Fq
xb

×

xr

xbq xbq+r

Figure 17.14: The KFF combinator

Definition KFF (kbr : Kchain) (fq : Fchain) : Fchain :=

K2F (KFK kbr fq).

Lemma KFF_correct :

forall (b q r : positive) (kbr : Kchain) (fq : Fchain),

Kchain_correct b r kbr ->

Fchain_correct q fq ->

Kchain_proper kbr ->

Fchain_proper fq ->

Fchain_correct (b * q + r) (KFF kbr fq).

17.9. EUCLIDEAN CHAINS 335

Check KFK_proper.

KFK_proper

: forall (kbr : Kchain) (fq : Fchain),

Kchain_proper kbr ->

Fchain_proper fq -> Kchain_proper (KFK kbr fq)

17.9.5.4 Conversion of an f-chain into a k-chain

The following conversion is useful when a chain generation algorithm needs to
build a k-chain for exponents p and 1:

Definition FK (f : Fchain) : Kchain :=

fun (A : Type) (k : Kkont A) (a : A) =>

f A (fun y => k y a) a.

Like our other combinators, FK respects chain correctness and properness.

17.9.5.5 Computing xp and xpq

Fp
x

Fq
xp

xp

xpq

Figure 17.15: The FFK combinator

Our last combinator composes a chain for computing xp with a chain for
computing xq to build a chain for computing xp and xpq.

Definition FFK (fp fq : Fchain) : Kchain :=

fun A k a => fp A (fun xb => fq A (fun y => k y xb) xb) a.

Lemma FFK_correct (p q : positive) (fp fq : Fchain):

Fchain_correct p fp ->

Fchain_correct q fq ->

Fchain_proper fp ->

Fchain_proper fq ->

Kchain_correct (p * q) p (FFK fp fq).

#[global] Instance FFK_proper

(fp fq : Fchain)

(_ : Fchain_proper fp)

(_ : Fchain_proper fq)

: Kchain_proper (FFK fp fq).

336 CHAPTER 17. SMART COMPUTATION OF XN

17.9.5.6 A correct-by-construction chain

A simple example will show us how to build correct chains for any positive
exponent, using the operators above.

#[global] Hint Resolve KFF_correct KFF_proper KFK_correct KFK_proper : chains.

Definition F87 :=

let k7_3 := KFK k3_1 (Fexp2 1) in

let k10_7 := KFK k7_3 F1 in

KFF k10_7 (Fexp2 3).

Compute the_exponent (F2C F87).

= 87

: positive

Lemma OK87 : Fchain_correct 87 F87.

Proof.

unfold F87; change 87 with (10 * (2 ^ 3) + 7)%positive.

apply KFF_correct;auto with chains.

change 10 with (7 * 1 + 3);

apply KFK_correct;auto with chains.

change 7 with (3 * 2 ^ 1 + 1)%positive;

apply KFK_correct;auto with chains.

Qed.

Note that this method of construction still requires some interaction from
the user. In the next section, we build a function that maps any positive number
n into a correct and proper chain for n. Thus correct chain generation will be
fully automated.

17.9.6 Automatic chain generation by Euclidean division
The goal of this section is to write a function make_chain (p:positive): chain

that builds a correct chain for p, using the Euclidean method above. In other
words, we want to get correct chains by computation. The correctness of the
result of this computation should be asserted by a theorem:

Theorem make_chain_correct :

forall p, chain_correct p (make_chain p).

In the previous section, we considered two different kinds of objects: f-chains,
associated with a single exponent, and k-chains, associated with two exponents.
We would expect that the function make_chain we want to define and certify is
structured as a pair of mutually recursive functions. In Coq , various ways of
building such functions are available:

• Structural [mutual] recursion with Fixpoint

• Using Program Fixpoint

17.9. EUCLIDEAN CHAINS 337

• Using Function.

Since our construction is based on Euclidean division, we could not define
our chain generator by structural recursion. For simplicity’s sake, we chose to
avoid dependent elimination and used Function with a decreasing measure.

For this purpose, we define a single data-type for associated with the gener-
ation of F- and K-chains.

We had two slight technical problems to consider:

• The generation of a k-chain for n and p is meaningful only if p < n.
Thus, in order to avoid a clumsy dependent pattern-matching, we chose
to represent a pair (n, p) where 0 < p < n by a pair of positive numbers
(p, d) where d = n− p

• In order to avoid to deal explicitly with mutual recursion, we defined a
type called signature for representing both forms of function calls. Thus,
it is easy to define a decreasing measure on type signature for proving
termination. Likewise, correctness and properness statements are also
indexed by this type.

Inductive signature : Type :=

| gen_F (n:positive) (** Fchain for the exponent n *)

| gen_K (p d: positive) (** Kchain for the exponents p+d and p *).

The following dependently-typed functions will help us to specify formally
any correct chain generator.

Definition signature_exponent (s:signature) : positive :=

match s with

| gen_F n => n

| gen_K p d => p + d

end.

Definition kont_type (s: signature)(A:Type) : Type :=

match s with

| gen_F _ => Fkont A

| gen_K _ _ => Kkont A

end.

Definition chain_type (s: signature) : Type :=

match s with

| gen_F _ => Fchain

| gen_K _ _ => Kchain

end.

Definition correctness_statement (s: signature) :

chain_type s -> Prop :=

match s with

| gen_F p => fun ch => Fchain_correct p ch

| gen_K p d => fun ch => Kchain_correct (p + d) p ch

end.

338 CHAPTER 17. SMART COMPUTATION OF XN

Definition proper_statement (s: signature) :

chain_type s -> Prop :=

match s with

| gen_F _ => fun ch => Fchain_proper ch

| gen_K _ _ => fun ch => Kchain_proper ch

end.

(** ** Full correctness *)

Definition OK (s: signature)

:= fun c: chain_type s => correctness_statement s c /\

proper_statement s c.

17.9.7 Generation of chains using Euclidean Division
Assume we want to build automatically a correct f-chain for some positive inte-
ger n. If n equals to 1, 3, or 2p for some positive integer p, this task is immediate,
thanks to the constants F1, F3 and Fexp2. Otherwise, like in [BCHM95], we de-
compose n into bq + r, where 1 < b < n, and compose the recursively built
chains for q and r on one side, and q on the other side.

The efficiency of this method depends on the choice of b. In [BCHM95], the
function that maps n into b is called a strategy.
From additions.Strategies.

Class Strategy (gamma : positive -> positive):=

{

gamma_lt :forall p:positive, 3 < p -> gamma p < p;

gamma_gt : forall p:positive, 3 < p -> 1 < gamma p

}.

17.9.8 The dichotomic strategy
In this chapter, we concentrate on the so-called dichotomic strategy, defined as
follows:

n 7→ n÷ 2k where k = b(log2 n)/2c

Intuitively, it corresponds to splitting the binary representation of a positive
integer into two halves. For instance, consider n = 87 its binary representation
is 1010111. The number b(log2 n)/2c is equal to 3. Dividing n by 23 gives the
decomposition n = 10 × 23 + 7. Thus, a chain for n = 87 can be built from a
chain computing both x7 and x10, and a chain that raises its argument to its
8− th power.

This strategy is defined in Module additions.Dichotomy.

Function dicho_aux (p:positive) {struct p} : positive :=

match p with

| 1%positive => xH

| 2%positive | 3%positive => 2

../theories/html/additions.Strategies.html
../theories/html/additions.Dichotomy.html

17.9. EUCLIDEAN CHAINS 339

| xO (xO q) | xO (xI q) | xI (xO q) | xI (xI q) =>

xO (dicho_aux q)

end.

Definition dicho (p:positive) : positive :=

N2pos (N.div (Npos p) (Npos (dicho_aux p))).

Compute dicho 87.

= 10

: positive

Compute dicho 130.

= 8

: positive

Compute dicho 128.

= 8

: positive

#[global] Instance Dicho_strat : Strategy dicho.

17.9.9 Other strategies

For comparison’s sake, we define two other strategies, much simpler but stati-
cally less efficient than the dichotomic strategy.

From Module additions.BinaryStrat.

Definition half (p:positive) :=

match p with xH => xH

| xI q | xO q => q

end.

Definition two (p:positive) := 2%positive.

#[global] Instance Binary_strat : Strategy half.

Proof.

split; destruct p; unfold half; try lia.

Qed.

#[global] Instance Two_strat : Strategy two.

Proof.

split;unfold two; lia.

Qed.

Page 341, we compare the three strategies with respect to the length of the
built chains.

../theories/html/additions.BinaryStrat.html

340 CHAPTER 17. SMART COMPUTATION OF XN

17.9.10 Main chain generation function
We are now able to define a function that generates a correct chain for any
signature. We use the Recdef module of Standard Library, with an appropriate
measure.

Section Gamma.

Variable gamma: positive -> positive.

Context (Hgamma : Strategy gamma).

Definition signature_measure (s : signature) : nat :=

match s with

| gen_F n => 2 * Pos.to_nat n

| gen_K p d => 2 * Pos.to_nat (p + d) +1

end.

The following function definition generates 9 proof obligations subgoals, for
proving that the measure on signatures is strictly decreasing along the recursive
calls. They are solved with the help of Standard Library’s lemmas on arithmetic
of positive numbers and Euclidean division.

Function chain_gen (s:signature) {measure signature_measure}

: chain_type s :=

match s return chain_type s with

| gen_F i =>

if pos_eq_dec i 1 then F1 else

if pos_eq_dec i 3

then F3

else

match exact_log2 i with

Some p => Fexp2 p

| _ =>

match N.pos_div_eucl i (Npos (gamma i))

with

| (q, 0%N) =>

Fcompose (chain_gen (gen_F (gamma i)))

(chain_gen (gen_F (N2pos q)))

| (q,_r) => KFF (chain_gen

(gen_K (N2pos _r)

(gamma i - N2pos _r)))

(chain_gen (gen_F (N2pos q)))

end end

| gen_K p d =>

if pos_eq_dec p 1 then FK (chain_gen (gen_F (1 + d)))

else

match N.pos_div_eucl (p + d) (Npos p) with

| (q, 0%N) => FFK (chain_gen (gen_F p))

(chain_gen (gen_F (N2pos q)))

| (q, _r) => KFK (chain_gen (gen_K (N2pos _r)

(p - N2pos _r)))

(chain_gen (gen_F (N2pos q)))

17.9. EUCLIDEAN CHAINS 341

end

end.

(* 9 Proof Obligations generated *)

Definition make_chain (n:positive) : chain :=

F2C (chain_gen (gen_F n)).

Theorem make_chain_correct : forall p, chain_correct p (make_chain p).

Proof.

intro p; destruct (chain_gen_OK (gen_F p)).

unfold make_chain; apply F2C_correct; apply H.

Qed.

End Gamma.

Compute the_exponent (make_chain dicho 87).

= 87

: positive

17.9.10.1 A few tests

The following tests show various examples of chains for the same exponent, using
different strategies. The dichotomic strategy seems clearly to be the winner (at
least on this sample)4.

Compute chain_length (make_chain two 56789).

= 25%nat : nat

Compute chain_length (make_chain half 56789).

= 25%nat : nat

Compute chain_length (make_chain dicho 56789).

= 21%nat : nat

Compute chain_length (make_chain two 3456789).

= 33%nat : nat

Compute chain_length (make_chain half 3456789).

(= 33%nat : nat

Compute chain_length (make_chain dicho 3456789).

= 29%nat : nat

4For efficiency’s sake, we commented out some (very) long computations. You may uncom-
ment them freely in your own copy. For the same reason, we put a verbatim trace instead of
Alectryon output

342 CHAPTER 17. SMART COMPUTATION OF XN

17.9.10.2 Correctness of the Euclidean chain generator

Recdef’s functional induction tactic allows us to prove that every value re-
turned by (chain_gen s) is correct w.r.t. s and proper. The proof obligations are
solved thanks to the previous lemmas on the composition operators on chains:
Fcompose, KFK, etc. Unfortunately, a lot of interaction is still needed for proving
properties of Euclidean division and binary logarithm.

Lemma chain_gen_OK : forall s:signature,

OK s (chain_gen s).

Proof.

intro s; functional induction chain_gen s.

(* A lot of arithmetic sub-proofs ... *)

17.9.10.3 A last example

Let us compute 677776145319 with 32 bits integers:

Ltac compute_chain ch :=

let X := fresh "x" in

let Y := fresh "y" in

let X := constr:ch in

let Y := (eval vm_compute in X) in

exact Y.

Let big_chain := ltac:(compute_chain (make_chain 6145319)).

Print big_chain.

big_chain =

fun (A : Type) (x : A) =>

x0 <--- x times x; x1 <--- x0 times x0;

x2 <--- x1 times x1; x3 <--- x2 times x1;

x4 <--- x3 times x3; x5 <--- x4 times x;

x6 <--- x5 times x5; x7 <--- x6 times x6;

x8 <--- x7 times x1; x9 <--- x8 times x5;

x10 <--- x9 times x8; x11 <--- x10 times x9;

x12 <--- x11 times x11; x13 <--- x12 times x11;

x14 <--- x13 times x10; x15 <--- x14 times x14;

x16 <--- x15 times x11; x17 <--- x16 times x16;

x18 <--- x17 times x17; x19 <--- x18 times x18;

x20 <--- x19 times x19; x21 <--- x20 times x20;

x22 <--- x21 times x21; x23 <--- x22 times x22;

x24 <--- x23 times x23; x25 <--- x24 times x24;

x26 <--- x25 times x25; x27 <--- x26 times x26;

x28 <--- x27 times x14; Return x28

: forall A : Type, A -> computation

Time Compute Int31.phi

(chain_apply big_chain (snd (positive_to_int31 67777))).

17.10. PROJECTS 343

= 2014111041%Z

: Z

Finished transaction in 0.005 secs (0.005u,0.s) (successful)}

Compute chain_length big_chain.

= 29%nat

: nat

17.9.11 Fibonacci, le retour
It is now possible to use Euclidean addition chains for computing Fibonacci
numbers (see Sections 17.2.3.2 on page 285 and 17.4.6 on page 300).

The following function is parameterized by any strategy γ.

Definition fib_eucl gamma `{Hgamma: Strategy gamma} n :=

let c := make_chain gamma n

in let r := chain_apply c (M:=Mul2) (1,0) in

fst r + snd r.

Time Compute fib_eucl dicho 153.

= 68330027629092351019822533679447

: N

Finished transaction in 0.014 secs (0.014u,0.s) (successful)

Time Compute fib_eucl two 153.

= 68330027629092351019822533679447

: N

Finished transaction in 0.011 secs (0.011u,0.s) (successful)

Time Compute fib_eucl half 153.

= 68330027629092351019822533679447

: N

Finished transaction in 0.01 secs (0.007u,0.003s) (successful)

17.10 Projects

Project 17.3 (Optimality and relative efficiency)

1. Prove that the chain generated by Fexp2 is optimal.

2. Prove that the length of any optimal chain for n is greater than or equal
to blog2 nc.

3. Prove that, for any positive n, the length of any Euclidean chain generated
by the dichotomic strategy is always less than or equal to the length of
binary_chain n, and for an infinite number of positive integers n, the first
chain is strictly shorter than the latter.

344 CHAPTER 17. SMART COMPUTATION OF XN

4. Prove that our implementation of the dichotomic strategy describes the
same function as in the literature (for instance [BCHM95].) This is im-
portant if we want to follow the complexity analyses in this and similar
articles.

5. Study how to compile a chain into imperative code, using a register allo-
cation strategy (it may be useful to define chain width).

Remark: The first two questions of the list above should involve a uni-
versal quantification on type chain. It may be necessary (but we’re not
sure) to consider some restriction on parametric chains.

17.10.1 A data structure for Euclidean chains
Figures 17.6 on page 321 to 17.15 on page 335 suggest that any computation
following an Euclidean chain can be executed on a kind of abstract machine
with a ”register” and a stack, and only four operations:

• multiply the contents of the register by the top of the stack (and pop that
stack),

• raising the contents of the register to its square,

• push the contents of the register into the stack,

• swapping the two elements at the top of the stack.

In Coq, we define the instructions as the four constructors of an inductive
type.

From Module additions.AM

Inductive instr : Set :=

| MUL : instr

| SQR : instr

| PUSH : instr

| SWAP : instr.

Definition code := list instr.

Section Semantics.

Variable A : Type.

Variable mul : A -> A -> A.

Variable one : A.

Definition stack := list A.

Definition config := (A * list A)%type.

Fixpoint exec (c : code) (x:A) (s: stack) : option config :=

match c, s with

nil, _ => Some (x,s)

| MUL::c, y::s => exec c (mul x y) s

../theories/html/additions.AM.html

17.10. PROJECTS 345

| SQR::c, s => exec c (mul x x) s

| PUSH::c, s => exec c x (x::s)

| SWAP::c, y::z::s => exec c x (z::y::s)

| _,_ => None

end.

Lemma exec_app :

forall (c c' : code) x s ,

exec (c ++ c') x s =

match exec c x s with

| None => None

| Some (y,s') => exec c' y s'

end.

(** Main well-formed chains *)

Definition F1 : code := nil.

(** raises x to its cube *)

Definition F3 := PUSH::SQR::MUL::nil.

(** chain for raising x to its (2 ^ q)th power *)

Fixpoint F2q_of_nat q := match q with

| 0%nat => nil

| S p => SQR:: F2q_of_nat p

end.

Definition F2q (p:positive) :=

F2q_of_nat (Pos.to_nat p).

(** for computing x^(pq+r) passing by x^p *)

Definition KFF (kpr mq:code) : code :=

kpr++(mq++MUL::nil).

(** for computing x^p and x^(pq) *)

Definition FFK (mp mq: code) := mp ++ PUSH :: mq.

(** for computing x^p then x^(pq + r) *)

Definition KFK (kpr mq: code) :=

kpr ++ PUSH::SWAP :: (mq ++ MUL :: nil).

Definition FK (fn: code) := PUSH::fn.

End Semantics.

Definition chain_apply c {A:Type}

346 CHAPTER 17. SMART COMPUTATION OF XN

{op:A->A->A}{one:A}{equ: Equiv A}

(M: EMonoid op one equ) x

:= exec _ op c x nil.

(** Example code for 7 via 3 *)

Example M7_3 := PUSH::PUSH::SQR::MUL::PUSH::SQR::SWAP::MUL::nil.

Compute chain_apply M7_3 Natplus 1%nat .

= Some (7%nat, 3%nat :: nil)

: option (config nat)

(** Example code for 31 via 7 *)

Example C31_7 := KFF M7_3 (F2q 2).

Compute chain_apply C31_7 Natplus 1%nat.

= Some (31%nat, nil)

: option (config nat)

For instance the chain of Fig. 17.4 on page 305 can be represented with the
following code:

Compute chain_gen dicho (gen_F 87).

= PUSH

:: PUSH

:: SQR

:: MUL

:: PUSH

:: SWAP

:: SQR

:: MUL

:: PUSH

:: SWAP

:: MUL

:: SQR

:: SQR

:: SQR

:: MUL

:: nil

: code

In the library additions.AM, we define a chain generator for this data struc-
ture. Please note that many proof scripts are copied verbatim from Euclidean_Chains

into AM. Removing such redundancies is left as a project.

Project 17.4 (Some improvements) 1. Improve automated proofs on types
positive and N.

2. Compare Program Fixpoint and Function for writing make_chain. Consider
measure vs well-founded relations, mutual recursion, possibility of using
sigma-types, etc.

../theories/html/additions.AM.html

17.10. PROJECTS 347

3. Chains are always associated with strictly positive exponents. Thus, many
lemmas about chain correctness can be proved using semi-groups instead
of monoids. Define type classes for semi-groups and use them whenever
possible.

348 CHAPTER 17. SMART COMPUTATION OF XN

Part IV

Appendices

349

Bibliography

[Abr96] Jean-Raymond Abrial. The B-book: Assigning Programs to Mean-
ings. Cambridge University Press, New York, NY, USA, 1996.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press, New York, NY, USA, 1st
edition, 2010.

[Bau] Andrej Bauer. The hydra game. http://math.andrej.com/2008/02/

02/the-hydra-game.

[Bau08] Andrej Bauer. The hydra game source code. https://github.com/

andrejbauer/hydra, 2008.

[BB87] Jean Berstel and Srećko Brlek. On the length of word chains. In-
formation Processing Letters, 26(1):23–28, 1987. http://www-igm.

univ-mlv.fr/~berstel/Articles/1987WordChains.pdf.

[BBB+22] Jonas Bayer, Christoph Benzmüller, Kevin Buzzard, Marco David,
Leslie Lamport, Yuri Matiyasevich, Lawrence Paulson, Dierk Schle-
icher, Benedikt Stock, and Efim Zelmanov. Mathematical proof
between generations. https://arxiv.org/abs/2207.04779, 2022.

[BC04a] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development: Coq’Art: The Calculus of Inductive Con-
structions. Springer, Berlin, Heidelberg, 2004. https://www.labri.

fr/perso/casteran/CoqArt/.

[BC04b] Yves Bertot and Pierre Castéran. Interactive Theorem Prov-
ing and Program Development: Coq’Art: The Calculus of In-
ductive Constructions, chapter Foundations of Inductive Types.
Springer, 2004. https://www-sop.inria.fr/members/Yves.Bertot/

coqart-chapter14.pdf.

[BCHM95] Srećko Brlek, Pierre Castéran, Laurent Habsieger, and Richard Mal-
lette. On-line evaluation of powers using Euclid’s algorithm. RAIRO
- Theoretical Informatics and Applications - Informatique Théorique
et Applications, 29(5):431–450, 1995. http://www.numdam.org/item/

ITA_1995__29_5_431_0.pdf.

[BCS91] Srećko Brlek, Pierre Castéran, and Robert Strandh. On addition
schemes. In International Joint Conference on Theory and Prac-
tice of Software Development, pages 379–393, Berlin, Heidelberg,

351

http://math.andrej.com/2008/02/02/the-hydra-game
http://math.andrej.com/2008/02/02/the-hydra-game
https://github.com/andrejbauer/hydra
https://github.com/andrejbauer/hydra
http://www-igm.univ-mlv.fr/~berstel/Articles/1987WordChains.pdf
http://www-igm.univ-mlv.fr/~berstel/Articles/1987WordChains.pdf
https://arxiv.org/abs/2207.04779
https://www.labri.fr/perso/casteran/CoqArt/
https://www.labri.fr/perso/casteran/CoqArt/
https://www-sop.inria.fr/members/Yves.Bertot/coqart-chapter14.pdf
https://www-sop.inria.fr/members/Yves.Bertot/coqart-chapter14.pdf
http://www.numdam.org/item/ITA_1995__29_5_431_0.pdf
http://www.numdam.org/item/ITA_1995__29_5_431_0.pdf

352 BIBLIOGRAPHY

1991. Springer. https://link.springer.com/content/pdf/10.1007%

2F3540539816_77.pdf.

[BMR16] Pierre-Léo Bégay, Pascal Manoury, and Itsaka Rakotonirina. Une
mesure ordinale pour les preuves de terminaison en coq. In Journées
Francophones des Langages Applicatifs, 2016. https://hal.archives-
ouvertes.fr/hal-01333597/document.

[BP01] Gilles Barthe and Olivier Pons. Type isomorphisms and proof reuse
in dependent type theory. In Proceedings of ETAPS 2001, volume
2030, pages 57–71, 01 2001.

[Bra39] Alfred Brauer. On addition chains. Bulletin of the American
Mathematical Society, 45(10):736–739, 10 1939. https://www.

ams.org/journals/bull/1939-45-10/S0002-9904-1939-07068-7/

S0002-9904-1939-07068-7.pdf.

[Bro10] Daniel Brown. Parametricity. https://web.archive.org/web/

20190628092255/http://www.ccs.neu.edu/home/matthias/369-s10/

Transcript/parametricity.pdf, 2010. Transcript of a lecture by
Matthias Felleisen.

[Bur75] William H. Burge. Recursive programming techniques. Addison-
Wesley, 1975.

[Can55] Georg Cantor. Contributions to the Founding of the Theory of Trans-
finite Numbers. Courier Corporation, 1955.

[Cas04] Pierre Castéran. Additions. User Contributions to the Coq Proof
Assistant, 2004. https://github.com/coq-contribs/additions.

[Cas07] Pierre Castéran. Utilisation en Coq de l’opérateur de description.
In Actes des Journées Francophones des Langages Applicatifs, pages
30–44, 2007. http://jfla.inria.fr/2007/actes/PDF/03_casteran.

pdf.

[CC06] Pierre Castéran and Évelyne Contejean. On ordinal notations. User
Contributions to the Coq Proof Assistant, 2006. https://github.

com/coq-contribs/cantor.

[CCk] The Coq community project. https://github.com/coq-community/.

[CDM13] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements
for free! In Certified Programs and Proofs, pages 147–162, Cham,
2013. Springer. https://hal.inria.fr/hal-01113453.

[CDP+22] Pierre Castéran, Jérémy Damour, Karl Palmskog, Clément Pit-
Claudel, and Théo Zimmermann. Hydras & Co.: Formalized mathe-
matics in Coq for inspiration and entertainment. 2022. Proceedings
of JFLA 2022.

[Chl08] Adam Chlipala. Parametric higher-order abstract syntax for mech-
anized semantics. In International Conference on Functional Pro-
gramming, pages 143–156, New York, NY, USA, 2008. ACM. http:
//adam.chlipala.net/papers/PhoasICFP08/.

https://link.springer.com/content/pdf/10.1007%2F3540539816_77.pdf
https://link.springer.com/content/pdf/10.1007%2F3540539816_77.pdf
https://www.ams.org/journals/bull/1939-45-10/S0002-9904-1939-07068-7/S0002-9904-1939-07068-7.pdf
https://www.ams.org/journals/bull/1939-45-10/S0002-9904-1939-07068-7/S0002-9904-1939-07068-7.pdf
https://www.ams.org/journals/bull/1939-45-10/S0002-9904-1939-07068-7/S0002-9904-1939-07068-7.pdf
https://web.archive.org/web/20190628092255/http://www.ccs.neu.edu/home/matthias/369-s10/Transcript/parametricity.pdf
https://web.archive.org/web/20190628092255/http://www.ccs.neu.edu/home/matthias/369-s10/Transcript/parametricity.pdf
https://web.archive.org/web/20190628092255/http://www.ccs.neu.edu/home/matthias/369-s10/Transcript/parametricity.pdf
https://github.com/coq-contribs/additions
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
https://github.com/coq-contribs/cantor
https://github.com/coq-contribs/cantor
https://github.com/coq-community/
https://hal.inria.fr/hal-01113453
http://adam.chlipala.net/papers/PhoasICFP08/
http://adam.chlipala.net/papers/PhoasICFP08/

BIBLIOGRAPHY 353

[Chl11] Adam Chlipala. Certified Programming with Dependent Types. MIT
Press, 2011. http://adam.chlipala.net/cpdt/.

[CLKK07] Hubert Comon-Lundh, Claude Kirchner, and Hélène Kirchner, ed-
itors. Rewriting, Computation and Proof: Essays Dedicated to
Jean-Pierre Jouannaud on the Occasion of His 60th Birthday.
Springer, Berlin, Heidelberg, 2007. https://link.springer.com/

book/10.1007%2F978-3-540-73147-4.

[CN04] Pierre Cassou-Noguès. Gödel. Les Belles Lettres, 2004. In French.

[Coq] Coq Development Team. The Coq Proof Assistant. https://coq.

inria.fr.

[CPC23] Shardul Chiplunkar and Clément Pit-Claudel. Diagrammatic nota-
tions for interactive theorem proving. In 4th International Workshop
on Human Aspects of Types and Reasoning Assistants, Cascais, Por-
tugal, 2023. https://infoscience.epfl.ch/record/305144.

[CPU+10] Évelyne Contejean, Andrei Paskevich, Xavier Urbain, Pierre
Courtieu, Olivier Pons, and Julien Forest. A3PAT, an approach
for certified automated termination proofs. In Workshop on Par-
tial Evaluation and Program Manipulation, pages 63–72, New York,
NY, USA, 2010. Association for Computing Machinery. https:

//hal.inria.fr/inria-00535655.

[CS] Pierre Castéran and Matthieu Sozeau. A gentle Introduction to
Type Classes and Relations in Coq. https://www.labri.fr/perso/

casteran/CoqArt/TypeClassesTut/typeclassestut.pdf.

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. The-
oretical Computer Science, 17(3):279–301, 1982. https://www.

sciencedirect.com/science/article/pii/0304397582900263/pdf.

[DM07] Nachum Dershowitz and Georg Moser. The hydra battle revisited.
In Rewriting, Computation and Proof: Essays Dedicated to Jean-
Pierre Jouannaud on the Occasion of His 60th Birthday, pages
1–27. Springer, Berlin, Heidelberg, 2007. https://www.cs.tau.ac.

il/~nachum/papers/LNCS/Hydra.pdf.

[Dow23] Gilles Dowek. Teaching Gödel’s incompleteness theorems, 2023.
https://arxiv.org/pdf/2303.18099.pdf.

[G8̈6] Kurt Gödel. Collected Works. Oxford University Press, 1986.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi,
Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau,
Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-
checked proof of the odd order theorem. In Interactive Theorem
Proving, pages 163–179, Berlin, Heidelberg, 2013. Springer. https:

//hal.inria.fr/hal-00816699.

http://adam.chlipala.net/cpdt/
https://link.springer.com/book/10.1007%2F978-3-540-73147-4
https://link.springer.com/book/10.1007%2F978-3-540-73147-4
https://coq.inria.fr
https://coq.inria.fr
https://infoscience.epfl.ch/record/305144
https://hal.inria.fr/inria-00535655
https://hal.inria.fr/inria-00535655
https://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf
https://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf
https://www.sciencedirect.com/science/article/pii/0304397582900263/pdf
https://www.sciencedirect.com/science/article/pii/0304397582900263/pdf
https://www.cs.tau.ac.il/~nachum/papers/LNCS/Hydra.pdf
https://www.cs.tau.ac.il/~nachum/papers/LNCS/Hydra.pdf
https://arxiv.org/pdf/2303.18099.pdf
https://hal.inria.fr/hal-00816699
https://hal.inria.fr/hal-00816699

354 BIBLIOGRAPHY

[Gal91] Jean H. Gallier. What’s so special about Kruskal’s theorem and the
ordinal Gamma0? A survey of some results in proof theory. An-
nals of Pure and Applied Logic, 53(3):199–260, 1991. https://www.

sciencedirect.com/science/article/pii/016800729190022E/pdf.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge
University Press, 1993. http://www.cs.ox.ac.uk/tom.melham/pub/

Gordon-1993-ITH.html.

[Gon08] Georges Gonthier. Formal proof—the four-color theorem. Notices of
the American Mathematical Society, 55(11):1382–1393, 2008. http:

//www.ams.org/notices/200811/tx081101382p.pdf.

[Goo44] R. L. Goodstein. On the restricted ordinal theorem. Journal of
Symbolic Logic, 9(2):33–41, 1944. https://www.jstor.org/stable/

2268019.

[GQS] José Grimm, Alban Quadrat, and Carlos Simpson. Gaia. https:

//github.com/coq-community/gaia. A Coq-community project.

[Gri09a] José Grimm. Implementation of Bourbaki’s Elements of Mathemat-
ics in Coq: Part one, theory of sets. Research Report RR-6999,
INRIA, 2009. https://hal.inria.fr/inria-00408143.

[Gri09b] José Grimm. Implementation of Bourbaki’s Elements of Mathe-
matics in Coq: Part two; ordered sets, cardinals, integers. Re-
search Report RR-7150, INRIA, 2009. https://hal.inria.fr/

inria-00440786.

[Gri13] José Grimm. Implementation of three types of ordinals in Coq.
Research Report RR-8407, INRIA, 2013. https://hal.inria.fr/

hal-00911710.

[Gri14] José Grimm. Fibonacci numbers and the Stern-Brocot tree in Coq.
Research Report RR-8654, INRIA, 2014. https://hal.inria.fr/

hal-01093589.

[Gri16] José Grimm. Implementation of Bourbaki’s Elements of Mathe-
matics in Coq: Part three structures. Research Report RR-8997,
INRIA, 2016. https://hal.inria.fr/hal-01412037.

[HAB+17] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John
Harrison, Le Truong Hoang, Cezary Kaliszyk, Victor Magron, Sean
McLaughlin, Tat Thang Nguyen, Quang Truong Nguyen, Tobias
Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev,
Thi Hoai An Ta, Nam Trung Tran, Thi Diep Trieu, Josef Ur-
ban, Ky Vu, and Roland Zumkeller. A formal proof of the Ke-
pler conjecture. Forum of Mathematics, Pi, 5, 2017. https:

//arxiv.org/abs/1501.02155.

[HBk] Hydra battles. https://github.com/coq-community/hydra-battles.
A Coq-community project.

https://www.sciencedirect.com/science/article/pii/016800729190022E/pdf
https://www.sciencedirect.com/science/article/pii/016800729190022E/pdf
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
https://www.jstor.org/stable/2268019
https://www.jstor.org/stable/2268019
https://github.com/coq-community/gaia
https://github.com/coq-community/gaia
https://hal.inria.fr/inria-00408143
https://hal.inria.fr/inria-00440786
https://hal.inria.fr/inria-00440786
https://hal.inria.fr/hal-00911710
https://hal.inria.fr/hal-00911710
https://hal.inria.fr/hal-01093589
https://hal.inria.fr/hal-01093589
https://hal.inria.fr/hal-01412037
https://arxiv.org/abs/1501.02155
https://arxiv.org/abs/1501.02155
https://github.com/coq-community/hydra-battles

BIBLIOGRAPHY 355

[Hof99] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden
Braid. Basic Books, 20 anv edition, February 1999.

[Hue97] Gérard Huet. The zipper. Journal of Functional Programming,
7(5):549–554, September 1997. https://www.cambridge.org/core/

journals/journal-of-functional-programming/article/zipper/

0C058890B8A9B588F26E6D68CF0CE204.

[KP82] Laurie Kirby and Jeff Paris. Accessible independence results for
Peano arithmetic. Bulletin of the London Mathematical Society,
14(4):285–293, 1982. https://faculty.baruch.cuny.edu/lkirby/

accessible_independence_results.pdf.

[KS81] Jussi Ketonen and Robert Solovay. Rapidly growing Ramsey func-
tions. Annals of Mathematics, 113(2):267–314, 1981. http://www.

jstor.org/stable/2006985.

[Mag03] Nicolas Magaud. Changing Data Representation within the Coq
System. In TPHOLs’2003, volume 2758 of LNCS. Springer-Verlag,
2003.

[MT18] Assia Mahboubi and Enrico Tassi. Mathematical Components.
https://doi.org/10.5281/zenodo.3999478, 2018. With contributions
by Yves Bertot and Georges Gonthier.

[MV05] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic: Al-
gorithms and mechanization. Journal of Automated Reasoning,
34(4):387–423, May 2005. http://www.ccs.neu.edu/home/pete/pub/

ordinal-arithmetic-algs-mech.pdf.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. Springer,
Berlin, Heidelberg, 2002. https://link.springer.com/book/10.

1007%2F3-540-45949-9.

[O’C05a] Russel O’Connor. Goedel. https://github.com/coq-community/

goedel, 2005. A Coq-community project.

[O’C05b] Russell O’Connor. Essential incompleteness of arithmetic verified
by Coq. In International Conference on Theorem Proving in Higher
Order Logics, pages 245–260, Berlin, Heidelberg, 2005. Springer.
https://arxiv.org/abs/cs/0505034.

[P+] Benjamin Pierce et al. Software Foundations. https://

softwarefoundations.cis.upenn.edu.

[PAU21] LAWRENCE C. PAULSON. Ackermann’s function in iterative
form: A proof assistant experiment. The Bulletin of Symbolic Logic,
27(4):426–435, 2021.

[PC] Clément Pit-Claudel. Alectryon. https://github.com/cpitclaudel/
alectryon.

https://www.cambridge.org/core/journals/journal-of-functional-programming/article/zipper/0C058890B8A9B588F26E6D68CF0CE204
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/zipper/0C058890B8A9B588F26E6D68CF0CE204
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/zipper/0C058890B8A9B588F26E6D68CF0CE204
https://faculty.baruch.cuny.edu/lkirby/accessible_independence_results.pdf
https://faculty.baruch.cuny.edu/lkirby/accessible_independence_results.pdf
http://www.jstor.org/stable/2006985
http://www.jstor.org/stable/2006985
https://doi.org/10.5281/zenodo.3999478
http://www.ccs.neu.edu/home/pete/pub/ordinal-arithmetic-algs-mech.pdf
http://www.ccs.neu.edu/home/pete/pub/ordinal-arithmetic-algs-mech.pdf
https://link.springer.com/book/10.1007%2F3-540-45949-9
https://link.springer.com/book/10.1007%2F3-540-45949-9
https://github.com/coq-community/goedel
https://github.com/coq-community/goedel
https://arxiv.org/abs/cs/0505034
https://softwarefoundations.cis.upenn.edu
https://softwarefoundations.cis.upenn.edu
https://github.com/cpitclaudel/alectryon
https://github.com/cpitclaudel/alectryon

356 BIBLIOGRAPHY

[PC20] Clément Pit-Claudel. Untangling mechanized proofs. In In-
ternational Conference on Software Language Engineering, pages
155–174, New York, NY, USA, 2020. Association for Computing
Machinery. https://dl.acm.org/doi/pdf/10.1145/3426425.3426940.

[Pla13] PlanetMath. Ackermann function is not primitive recursive. https:
//planetmath.org/ackermannfunctionisnotprimitiverecursive,
2013.

[Prö13] Hans Jürgen Prömel. Rapidly growing Ramsey functions.
In Ramsey Theory for Discrete Structures, pages 97–103.
Springer, Cham, 2013. https://link.springer.com/chapter/10.

1007/978-3-319-01315-2_8.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymor-
phism. In R. E. A. Mason, editor, Information Processing 83, pages
513–523, Amsterdam, 1983. Elsevier.

[Rey93] John C. Reynolds. The discoveries of continuations. LISP and
Symbolic Computation, 6:233–247, 1993. https://link.springer.

com/content/pdf/10.1007/BF01019459.pdf.

[RPY+21] Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and
Dan Grossman. Proof Repair across Type Equivalences, page
112–127. Association for Computing Machinery, New York, NY,
USA, 2021.

[Sch] Daniel Schepler. Zorn’s lemma (the Topology project). https://

github.com/coq-community/topology.

[Sch77] Kurt Schütte. Proof Theory. Springer, 1977. https://link.

springer.com/book/10.1007%2F978-3-642-66473-1.

[Ser14] Ilya Sergey. Programs and Proofs: Mechanizing Mathematics with
Dependent Types, 2014. https://doi.org/10.5281/zenodo.4996238.

[Sim04a] Carlos Simpson. Category theory in ZFC. User Contributions to
the Coq Proof Assistant, 2004. https://github.com/coq-contribs/

cats-in-zfc.

[Sim04b] Carlos Simpson. Set-theoretical mathematics in Coq, 2004. https:

//arxiv.org/abs/math/0402336.

[Sla07] Will Sladek. The Termite and the Tower: Goodstein sequences and
provability in PA. https://www.uio.no/studier/emner/matnat/ifi/

INF5170/v08/undervisningsmateriale/sladekgoodstein.pdf, 2007.

[SM19] Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-
level dependently-typed functional programming and proving in
Coq. Proceedings of the ACM on Programming Languages, 3(ICFP),
July 2019. https://hal.inria.fr/hal-01671777.

[Smu92] R.M. Smullyan. Gödel’s Incompleteness Theorems. Logic Guides
Series. Oxford University Press, 1992.

https://dl.acm.org/doi/pdf/10.1145/3426425.3426940
https://planetmath.org/ackermannfunctionisnotprimitiverecursive
https://planetmath.org/ackermannfunctionisnotprimitiverecursive
https://link.springer.com/chapter/10.1007/978-3-319-01315-2_8
https://link.springer.com/chapter/10.1007/978-3-319-01315-2_8
https://link.springer.com/content/pdf/10.1007/BF01019459.pdf
https://link.springer.com/content/pdf/10.1007/BF01019459.pdf
https://github.com/coq-community/topology
https://github.com/coq-community/topology
https://link.springer.com/book/10.1007%2F978-3-642-66473-1
https://link.springer.com/book/10.1007%2F978-3-642-66473-1
https://doi.org/10.5281/zenodo.4996238
https://github.com/coq-contribs/cats-in-zfc
https://github.com/coq-contribs/cats-in-zfc
https://arxiv.org/abs/math/0402336
https://arxiv.org/abs/math/0402336
https://www.uio.no/studier/emner/matnat/ifi/INF5170/v08/undervisningsmateriale/sladekgoodstein.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5170/v08/undervisningsmateriale/sladekgoodstein.pdf
https://hal.inria.fr/hal-01671777

BIBLIOGRAPHY 357

[SO08] Matthieu Sozeau and Nicolas Oury. First-class type classes.
In International Conference on Theorem Proving in Higher
Order Logics, pages 278–293, Berlin, Heidelberg, 2008.
Springer. https://sozeau.gitlabpages.inria.fr/www/research/

publications/First-Class_Type_Classes.pdf.

[Str00] Christopher Strachey. Fundamental concepts in programming lan-
guages. Higher-Order and Symbolic Computation, 13(1-2):11–49,
April 2000. https://www.cs.cmu.edu/~crary/819-f09/Strachey67.

pdf.

[SvdW11] Bas Spitters and Eelis van der Weegen. Type classes for mathemat-
ics in type theory. Mathematical Structures in Computer Science,
21(4):795–825, 2011. https://arxiv.org/abs/1102.1323.

[Sza93] Nora Szasz. A machine checked proof that ackermann’s function
is not primitive recursive. In Papers Presented at the Second An-
nual Workshop on Logical Environments, page 317–338, USA, 1993.
Cambridge University Press.

[Tel00] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, Cambridge, United Kingdom, second edition, 2000.

[Wad89] Philip Wadler. Theorems for free! In International Conference
on Functional Programming Languages and Computer Architec-
ture, pages 347–359, New York, NY, USA, 1989. ACM. https:

//homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.

[Wai70] Stan Wainer. A classification of the ordinal recursive func-
tions. Archiv für mathematische Logik und Grundlagenforschung,
13(3):136–153, Dec 1970. https://link.springer.com/article/10.

1007%2FBF01973619.

[WB87] Stan Wainer and Wilfried Buchholz. Provably computable
functions and the fast growing hierarchy. In Stephen G.
Simpson, editor, Contemporary Mathematics, volume 65, pages
179–198. American Mathematical Society, Providence, RI, USA,
1987. http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:

19-epub-3843-7.

https://sozeau.gitlabpages.inria.fr/www/research/publications/First-Class_Type_Classes.pdf
https://sozeau.gitlabpages.inria.fr/www/research/publications/First-Class_Type_Classes.pdf
https://www.cs.cmu.edu/~crary/819-f09/Strachey67.pdf
https://www.cs.cmu.edu/~crary/819-f09/Strachey67.pdf
https://arxiv.org/abs/1102.1323
https://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps
https://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps
https://link.springer.com/article/10.1007%2FBF01973619
https://link.springer.com/article/10.1007%2FBF01973619
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-3843-7
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-3843-7

358 BIBLIOGRAPHY

Chapter 18

Index and tables

In progress This index is currently under reorganiza-
tion. We apologize for its incompleteness!

359

360 CHAPTER 18. INDEX AND TABLES

Links to Gaia Library

Accessibility and paths inside ε0, 105,
151

Canonical sequences, 104, 105, 149

Exponential of base ω, 76

Finite ordinals, 76

Hessenberg sum, 97, 98, 147

Impossibility theorems, 111, 118
Introduction, 10, 19, 51, 75, 141

Limit and successor ordinals, 83

Ordinal notations, 91
Ordinal terms in Cantor normal form,

80

Pretty printing Cantor normal forms,
78

Rapidly growing functions, 138, 155

Strict order on ordinals below ε0, 79

Termination of all hydra battles, 99
The ordinal ω, 76
Type of well formed ordinal terms

below ε0, 82

COQ, PLUG-INS AND STANDARD LIBRARY 361

Coq, plug-ins and standard library

Commands
Scheme, 222

Continuation Passing Style (CPS),
303, 330

Dependent pattern matching, 208
Dependent types, 204, 206
Dependently typed functions, 204,

223, 224, 337

Generalized rewriting, 293

Mutual induction, 225
Mutually inductive types, 29, 206

Parametric Higher-Order Abstract
Syntax (PHOAS), 303

Parametricity, 313
Plug-ins

Equations, 62, 127, 129, 136
Gaia, 141
Paramcoq, 313

Proofs by reflection, 308

Type classes, 290, 293, 298, 325
Equivalence relations, 293
Operational type classes, 288
Proper class, 298, 325

Unicity of equality proofs, 82

362 CHAPTER 18. INDEX AND TABLES

Mathematical notions and algorithmics

Abstract properties of arithmetic func-
tions, 134

Ackermann function, 62, 220
Addition chains, 302
Additive principal ordinals, 76

Cantor normal form, 73

Euclidean addition chains, 321

Fibonacci numbers
Matrix exponentiation, 285

Notations
Interval, 47

Ordinal numbers, 51
Accessibility inside epsilon0, 105
Additive principal ordinals, 174
Canonical sequences, 102
Cantor normal form, 180
Critical ordinals, 179
Ketonen-Solovay machinery, 101
Large sets, 119
Minimal large sets, 119
Ordering functions, 170

Primitive recursive functions, 203

Rapidly growing functions, 136
Hardy Hierarchy, 129
Wainer Hierarchy, 136

Transfinite induction, 87, 89, 97, 102,
104, 107, 109, 112, 113, 115,
122, 129, 134, 180

LIBRARY HYDRAS: ORDINALS AND HYDRA BATTLES 363

Library hydras: Ordinals and hydra battles

Abstract properties of arithmetic func-
tions, 134

Exercises, 27, 30, 33, 34, 45, 47,
57, 65, 69, 70, 84, 86, 87,
95, 105–107, 113, 129, 138,
148, 179, 181, 202, 203, 220,
272, 273

Library Epsilon0
Functions
canon, 103
canonS, 103
F_ (Wainer hierarchy), 136
H_ (Hardy hierarchy (vari-
ant)), 129

L_ (final step of a minimal
path, 127

pp (pretty printing terms in
Cantor normal form), 77

succ, 84
Notations
phi0 (exponential of base omega),
76

Predicates
mlarge (minimal large sequences),
120

path_to, 106
Types
E0, 81
ppT1, 77
T1, 74

Library Gamma0
Types
T2, 186

Library Hydra
Predicates
round, 33
round_n, 33
Termination, 44

Type classes
Battle, 34
Hvariant, 44

Types
Hydra, 25
Hydrae, 25

Library OrdinalNotations

Type classes
ON, 52
ON_correct, 69
ON_Iso, 70
SubON, 68

Library Prelude
iterate, 38, 136, 137, 220

Library Schutte
Constants
zero, 166

Functions
phi0, 174
plus, 172
succ, 167

Predicates
AP (additive principal ordi-

nals), 174
Closed, 175
Cr (critical ordinals), 179
is_cnf_of (to be a Cantor nor-

mal form of, 180
ordering_function, 170

Type classes
WO (well order), 162

Types
Ord, 162

Projects, 20, 25, 33, 69–71, 78, 91,
97, 98, 118, 181, 183, 185,
186, 188, 192, 193

364 CHAPTER 18. INDEX AND TABLES

Library hydras.Ackermann: Primitive recursive
functions, Gödel encoding

Ackermann function, 220

Exercises, 215–218, 264

Functions
evalPrimRec, 208
evalPrimRecs, 208

Predicates
extEqual, 204
isPR, 211

Projects, 235, 258

Types
naryFunc, 203
PrimRec, 206
PrimRecs, 206

LIBRARY ADDITIONS: ADDITION CHAINS 365

Library additions: Addition chains

Exercises, 285, 320

Projects, 306, 343

Type classes
EMonoid, 293
Monoid, 290

Types
chain (addition chains), 304
computation, 304

	Introduction
	Generalities
	How to install the libraries
	Comments on exercises and projects
	Acknowledgements

	I Hydras and ordinals
	Hydras and hydra games
	Hydras and their representation in Coq
	Relational description of hydra battles
	A long battle
	Generic properties

	Introduction to ordinal numbers and ordinal notations
	The mathematical point of view
	Ordinal numbers in Coq
	Ordinal Notations
	Example: the ordinal omega
	Sum of two ordinal notations
	Limits and successors
	Product of ordinal notations
	The ordinal omega2
	A notation for finite ordinals
	Comparing two ordinal notations
	Comparing an ordinal notation with Schütte's model
	Isomorphism of ordinal notations
	Other ordinal notations

	The ordinal epsilon0
	The ordinal epsilon0
	Well-foundedness and transfinite induction
	An ordinal notation for omegaômega
	A variant for hydra battles

	The Ketonen-Solovay machinery
	Introduction
	Canonical Sequences
	Accessibility inside epsilon0: paths
	A proof of impossibility
	The case of standard battles

	Large sets and rapidly growing functions
	Definitions
	Length of minimal large sequences
	A variant of the Hardy hierarchy
	A variant of the Wainer hierarchy (functions F_alpha)
	More about rapidly growing functions

	Gaia and the hydra (draft)
	Introduction
	Library structure
	Importing Definitions and theorems from Hydra-battles
	Rapidly growing arithmetic functions
	Importing a theorem from Gaia

	Countable ordinals (after Schütte)
	Declarations and axioms
	Additional axioms
	The successor function
	Finite ordinals
	The definition of omega
	The exponential of basis omega
	More about epsilon0
	Critical ordinals
	Cantor normal form
	An embedding of T1 into Ord
	Related work

	The Ordinal Gamma0 (first draft)
	Introduction
	The type T2 of ordinal terms
	A strict order on T2
	Veblen normal form
	Main functions on T2
	An ordinal notation for Gamma0

	II Ackermann, Gödel, Peano…
	General presentation (draft)
	Introduction
	File contents
	Warning

	Primitive recursive functions
	Introduction
	Mathematical definition
	First look at the Ackermann library
	Abstract syntax for primitive recursive functions
	Proving that a given Coq arithmetic function is primitive recursive
	Proofs by induction over all primitive recursive functions
	Ackermann function is not primitive recursive
	The length of standard hydra battles

	First Order Logic (in construction)
	Introduction
	Data types
	A notation scope for first-order terms and formulas
	Computing and reasoning on first-order formulas
	Proofs
	Concluding remarks

	Natural Deduction (in construction)
	Contexts as sets
	The Deduction theorem
	Derived rules and natural deduction

	Languages for Arithmetic (in construction)
	Notations for Formulas (experimental)

	Gödel's Encoding (in construction)
	Cantor pairing function
	First order logic and Gödel encoding

	Every Primitive Recursive Function is representable

	III A few certified algorithms
	Smart computation of Powers
	Introduction
	Some basic implementations
	Representing monoids in Coq
	Computing powers in any EMonoid
	Comparing exponentiation algorithms with respect to efficiency
	Addition chains
	Proving a chain's correctness
	Certified chain generators
	Euclidean Chains
	Projects

	IV Appendices
	Index and tables
	Links to Gaia Library
	Coq, plug-ins and standard library
	Mathematical notions and algorithmics
	Library hydras: Ordinals and hydra battles
	Library hydras.Ackermann: Primitive recursive functions, Gödel encoding
	Library additions: Addition chains

