ATBR.Functors
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
Functors and homomorphisms between algebraic structures
Require Import Common.
Require Import Classes.
Require Import SemiLattice.
Require Import KleeneAlgebra.
Set Implicit Arguments.
Unset Strict Implicit.
Record functor (G1 G2: Graph) := {
fT: @T G1 -> @T G2;
fX:> forall A B, X A B -> X (fT A) (fT B)
}.
Section Defs.
Context {G1: Graph} {G2: Graph}.
Class graph_functor (F: functor G1 G2) := {
functor_compat: forall A B, Proper (equal A B ==> equal _ _) (F A B)
}.
Definition faithful (F: functor G1 G2) :=
forall A B x y, F A B x == F A B y -> x == y.
Definition full (F: functor G1 G2) :=
forall A B y, exists x, F A B x == y.
Class monoid_functor {Mo1: Monoid_Ops G1} {Mo2: Monoid_Ops G2} (F: functor G1 G2) := {
monoid_graph_functor :> graph_functor F;
functor_dot : forall A B C x y, F A C (x*y) == F A B x * F B C y;
functor_one : forall A, F A A 1 == 1
}.
Class semilattice_functor {SLo1: SemiLattice_Ops G1} {SL2: SemiLattice_Ops G2} (F: functor G1 G2) := {
semilattice_graph_functor :> graph_functor F;
functor_plus : forall A B x y, F A B (x+y) == F A B x + F A B y;
functor_zero : forall A B, F A B 0 == 0
}.
Section SLfunct.
Context {SLo1} {SL1: @SemiLattice G1 SLo1} {SLo2} {SL2: @SemiLattice G2 SLo2} {F: functor G1 G2} {HF: semilattice_functor F}.
Lemma functor_incr: forall A B, Proper ((leq A B) ==> (leq _ _)) (F A B).
Proof.
intros. intros x y H. unfold leq. rewrite <- functor_plus. apply functor_compat. trivial.
Qed.
Lemma functor_sum: forall A B i k f, F A B (sum i k f) == sum i k (fun i => F A B (f i)).
Proof.
intros. revert i; induction k; intro i.
apply functor_zero.
simpl. rewrite functor_plus. apply plus_compat; auto.
Qed.
End SLfunct.
Context
{Mo1: Monoid_Ops G1} {Mo2: Monoid_Ops G2}
{SLo1: SemiLattice_Ops G1} {SLo2: SemiLattice_Ops G2}
{Ko1: Star_Op G1} {Ko2: Star_Op G2}.
Class semiring_functor (F: functor G1 G2) := {
semiring_monoid_functor :> monoid_functor F;
semiring_semilattice_functor :> semilattice_functor F
}.
Lemma functor_star_leq {KA1: KleeneAlgebra G1} {KA2: KleeneAlgebra G2}
{F: functor G1 G2} {HF: semiring_functor F}:
forall A a, (F A A a)# <== F A A (a#).
Proof.
intros.
apply star_destruct_left_one.
rewrite <- functor_one.
rewrite <- functor_dot.
rewrite <- functor_plus.
apply functor_incr. rewrite star_make_right. reflexivity.
Qed.
Class kleene_functor (F: functor G1 G2) := {
kleene_semiring :> semiring_functor F;
functor_star: forall A a, F A A (a#) == (F A A a) #
}.
End Defs.