ATBR.Reification
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
Inductives (syntax) and evaluation functions for reifying the various classes from Classes
Require Import Common Classes.
Require Import FMapPositive.
Require Import Eqdep.
Set Implicit Arguments.
Unset Strict Implicit.
Set Asymmetric Patterns.
(* generic environments *)
Definition sigma := PositiveMap.t.
Definition sigma_get A default (map: sigma A) (n: positive) : A :=
match PositiveMap.find n map with
| None => default
| Some x => x
end.
Definition sigma_add := @PositiveMap.add.
Definition sigma_empty := @PositiveMap.empty.
(* packaged typed values *)
Record Pack {G: Graph} typ := pack { src_p: positive; tgt_p: positive; unpack: X (typ src_p) (typ tgt_p) }.
(* Value environment *)
Class Env {G: Graph} := env { typ: positive -> T; val: positive -> Pack typ }.
(* acces to domain/codomain informations *)
Definition src `{env: Env} i := typ (src_p (val i)).
Definition tgt `{env: Env} i := typ (tgt_p (val i)).
(* heterogeneous dependent equality over pairs of positives *)
Section S.
Context `{env: Env}.
Definition eqd n m p q (x: X (typ n) (typ m)) (y: X (typ p) (typ q)) :=
eq_dep (prod positive positive) (fun i => X (typ (fst i)) (typ (snd i))) (n,m) x (p,q) y.
Lemma pos_eq_dec: forall n m: positive, {n=m}+{n<>m}.
Proof. decide equality. Qed.
Lemma eqd_inj: forall n m x y, @eqd n m n m x y -> x = y.
Proof. intros. apply Eqdep_dec.eq_dep_eq_dec in H; trivial. decide equality; apply pos_eq_dec. Qed.
End S.
Infix " [=] " := eqd (at level 70).
Module Semiring.
Section S.
Context `{env: Env}.
Inductive X: positive -> positive -> Type :=
| dot: forall A B C, X A B -> X B C -> X A C
| one: forall A, X A A
| plus: forall A B, X A B -> X A B -> X A B
| zero: forall A B, X A B
| var: forall i, X (src_p (val i)) (tgt_p (val i)).
Context {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G}.
Fixpoint eval n m (x: X n m): Classes.X (typ n) (typ m) :=
match x with
| dot _ _ _ x y => eval x * eval y
| one _ => 1
| plus _ _ x y => eval x + eval y
| zero _ _ => 0
| var i => unpack (val i)
end.
End S.
End Semiring.
Module KA.
Section S.
Context `{env: Env}.
Inductive X: positive -> positive -> Type :=
| dot: forall A B C, X A B -> X B C -> X A C
| one: forall A, X A A
| plus: forall A B, X A B -> X A B -> X A B
| zero: forall A B, X A B
| star: forall A, X A A -> X A A
| var: forall i, X (src_p (val i)) (tgt_p (val i)).
Context {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G} {Ko: Star_Op G}.
Fixpoint eval n m (x: X n m): Classes.X (typ n) (typ m) :=
match x with
| dot _ _ _ x y => eval x * eval y
| one _ => 1
| plus _ _ x y => eval x + eval y
| zero _ _ => 0
| star _ x => eval x #
| var i => unpack (val i)
end.
End S.
End KA.
Declare ML Module "reification_plugin".