ATBR.StrictKleeneAlgebra
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
Class of "Strict Kleene Algebras" : those without a zero;
extension of the kleene_reflexivity tactic to these structures,
using a faithful embedding.
Require Import Common.
Require Import Classes.
Require Import DecideKleeneAlgebra.
Set Implicit Arguments.
Unset Printing Implicit Defensive.
Bind Scope SA_scope with X.
Strict Kleene Algebras operations
Class SKA_Ops (G: Graph) := {
dot: forall A B C, X A B -> X B C -> X A C;
one: forall A, X A A;
plus: forall A B, X A B -> X A B -> X A B;
star: forall A, X A A -> X A A;
leq: forall A B: T, relation (X A B) := fun A B x y => equal A B (plus A B x y) y
}.
Notation "x == y" := (equal _ _ x y) (at level 70): SA_scope.
Notation "x <== y" := (leq _ _ x y) (at level 70): SA_scope.
Notation "x * y" := (dot _ _ _ x y) (at level 40, left associativity): SA_scope.
Notation "x + y" := (plus _ _ x y) (at level 50, left associativity): SA_scope.
Notation "x #" := (star _ x) (at level 15, left associativity): SA_scope.
Notation "1" := (one _): SA_scope.
Close Scope A_scope.
Open Scope SA_scope.
Delimit Scope SA_scope with SA.
dot: forall A B C, X A B -> X B C -> X A C;
one: forall A, X A A;
plus: forall A B, X A B -> X A B -> X A B;
star: forall A, X A A -> X A A;
leq: forall A B: T, relation (X A B) := fun A B x y => equal A B (plus A B x y) y
}.
Notation "x == y" := (equal _ _ x y) (at level 70): SA_scope.
Notation "x <== y" := (leq _ _ x y) (at level 70): SA_scope.
Notation "x * y" := (dot _ _ _ x y) (at level 40, left associativity): SA_scope.
Notation "x + y" := (plus _ _ x y) (at level 50, left associativity): SA_scope.
Notation "x #" := (star _ x) (at level 15, left associativity): SA_scope.
Notation "1" := (one _): SA_scope.
Close Scope A_scope.
Open Scope SA_scope.
Delimit Scope SA_scope with SA.
Strict Kleene Algebras axioms
Class StrictKleeneAlgebra {G: Graph} {Ops: SKA_Ops G} := {
dot_compat:>
forall A B C, Proper (equal A B ==> equal B C ==> equal A C) (dot A B C);
plus_compat:>
forall A B, Proper (equal A B ==> equal A B ==> equal A B) (plus A B);
dot_assoc: forall A B C D (x: X A B) y (z: X C D), x*(y*z) == (x*y)*z;
dot_neutral_left: forall A B (x: X A B), 1*x == x;
dot_neutral_right: forall A B (x: X A B), x*1 == x;
plus_idem: forall A B (x: X A B), x+x == x;
plus_assoc: forall A B (x y z: X A B), x+(y+z) == (x+y)+z;
plus_com: forall A B (x y: X A B), x+y == y+x;
dot_distr_left: forall A B C (x y: X A B) (z: X B C), (x+y)*z == x*z + y*z;
dot_distr_right: forall A B C (x y: X B A) (z: X C B), z*(x+y) == z*x + z*y;
star_make_left: forall A (a:X A A), 1 + a#*a == a#;
star_destruct_left: forall A B (a: X A A) (c: X A B), a*c <== c -> a#*c <== c;
star_destruct_right: forall A B (a: X A A) (c: X B A), c*a <== c -> c*a# <== c
}.
Arguments StrictKleeneAlgebra G {Ops}.
dot_compat:>
forall A B C, Proper (equal A B ==> equal B C ==> equal A C) (dot A B C);
plus_compat:>
forall A B, Proper (equal A B ==> equal A B ==> equal A B) (plus A B);
dot_assoc: forall A B C D (x: X A B) y (z: X C D), x*(y*z) == (x*y)*z;
dot_neutral_left: forall A B (x: X A B), 1*x == x;
dot_neutral_right: forall A B (x: X A B), x*1 == x;
plus_idem: forall A B (x: X A B), x+x == x;
plus_assoc: forall A B (x y z: X A B), x+(y+z) == (x+y)+z;
plus_com: forall A B (x y: X A B), x+y == y+x;
dot_distr_left: forall A B C (x y: X A B) (z: X B C), (x+y)*z == x*z + y*z;
dot_distr_right: forall A B C (x y: X B A) (z: X C B), z*(x+y) == z*x + z*y;
star_make_left: forall A (a:X A A), 1 + a#*a == a#;
star_destruct_left: forall A B (a: X A A) (c: X A B), a*c <== c -> a#*c <== c;
star_destruct_right: forall A B (a: X A A) (c: X B A), c*a <== c -> c*a# <== c
}.
Arguments StrictKleeneAlgebra G {Ops}.
Lifting an equivalence relation to option types
Section oe.
Variable A: Type.
Variable R: relation A.
Inductive oequal: relation (option A) :=
| oe_some: forall x y, R x y -> oequal (Some x) (Some y)
| oe_none: oequal None None.
Hypothesis HR: Equivalence R.
Lemma oequal_equivalence: Equivalence oequal.
Proof.
constructor.
intros [x|]; constructor. reflexivity.
intros x y [x' y' H|]; constructor. symmetry. assumption.
intros x y z [x' y' H|] H'; trivial.
inversion_clear H'. constructor. rewrite H. assumption.
Qed.
End oe.
Unset Strict Implicit.
Definition of the faithful embedding from Strict Kleene Algebras
to Kleene Algebras
Section F.
Context G Ops `{@StrictKleeneAlgebra G Ops}.
Program Instance oGraph: Graph := {
T := T;
X A B := option (X A B);
equal A B := oequal (equal A B)
}.
Obligation 1.
intros. apply oequal_equivalence, G.
Defined.
Definition inj A B (x: @X G A B): @X oGraph A B := Some x.
Lemma faithful: forall A B (x y: X A B), inj x == inj y -> x == y.
Proof.
intros A B x y Hxy. inversion_clear Hxy. assumption.
Qed.
Global Instance oMonoid_Ops: Monoid_Ops oGraph := {
dot A B C x y :=
match x,y with
| Some x, Some y => Some (x*y)
| _,_ => None
end;
one A := Some 1
}.
Global Instance oSemiLattice_Ops: SemiLattice_Ops oGraph := {
plus A B x y :=
match x,y with
| None,y => y
| x,None => x
| Some x, Some y => Some (x+y)
end;
zero A B := None
}.
Global Instance oStar_Op: Star_Op oGraph := {
star A x :=
match x with
| None => Some 1
| Some x => Some (x#)
end
}.
Instance oMonoid: Monoid oGraph.
Proof.
constructor; intros.
intros _ _ [x x' Hx|] _ _ [y y' Hy|]; simpl; constructor.
apply dot_compat; assumption.
destruct x; try constructor.
destruct y; try constructor.
destruct z; constructor. apply dot_assoc.
destruct x; simpl; constructor. apply dot_neutral_left.
destruct x; simpl; constructor. apply dot_neutral_right.
Qed.
Instance oSemiLattice: SemiLattice oGraph.
Proof.
constructor; intros.
intros _ _ [x x' Hx|] _ _ [y y' Hy|]; simpl; constructor; trivial.
apply plus_compat; assumption.
destruct x; simpl; constructor. reflexivity.
destruct x; simpl; constructor. apply plus_idem.
destruct x; destruct y; destruct z; simpl; constructor; try reflexivity.
apply plus_assoc.
destruct x; destruct y; simpl; constructor; try reflexivity.
apply plus_com.
Qed.
Instance oIdemSemiRing: IdemSemiRing oGraph.
Proof.
constructor; eauto with typeclass_instances; intros.
destruct x; reflexivity.
destruct x; destruct y; destruct z; simpl; constructor; try reflexivity.
apply dot_distr_left.
destruct x; destruct y; destruct z; simpl; constructor; try reflexivity.
apply dot_distr_right.
Qed.
Global Instance oKleeneAlgebra: KleeneAlgebra oGraph.
Proof.
constructor; eauto with typeclass_instances.
intros A [a|]; simpl; constructor; try reflexivity.
apply star_make_left.
intros A B [a|] [c|] Hac; simpl in *; try constructor.
apply star_destruct_left. inversion_clear Hac. assumption.
rewrite dot_neutral_left. apply plus_idem.
intros A B [a|] [c|] Hac; simpl in *; try constructor.
apply star_destruct_right. inversion_clear Hac. assumption.
rewrite dot_neutral_right. apply plus_idem.
Qed.
End F.
The exported tactic embeds the goal in Kleene algebras and calls kleene_reflexivity
Ltac skleene_reflexivity :=
(* parse converts an expression of strict Kleene algebras into an expression of Kleene algebras *)
let rec parse t :=
match t with
| @dot ?G ?O ?A ?B ?C ?x ?y =>
let x := parse x in
let y := parse y in
constr:(@Classes.dot (@oGraph G) (@oMonoid_Ops G O) A B C x y)
| @one ?G ?O ?A =>
constr:(@Classes.one (@oGraph G) (@oMonoid_Ops G O) A)
| @plus ?G ?O ?A ?B ?x ?y =>
let x := parse x in
let y := parse y in
constr:(@Classes.plus (@oGraph G) (@oSemiLattice_Ops G O) A B x y)
| @star ?G ?O ?A ?x =>
let x := parse x in
constr:(@Classes.star (@oGraph G) (@oStar_Op G O) A x)
| _ => constr:(inj t)
end
in
unfold leq;
lazymatch goal with
| |- @equal ?G ?A ?B ?x ?y =>
let x := parse x in
let y := parse y in
apply faithful; change (@equal (@oGraph G) A B x y); kleene_reflexivity
end.
(*begintests
Section t.
Context `{StrictKleeneAlgebra}.
Lemma test: forall A B (a: X A B) (b: X B A), a*(b*a) == (a*b)*a.
Proof.
intros.
skleene_reflexivity.
Qed.
Lemma test': forall A (a b: X A A), (a+b+1) == a*(b*a).
Proof.
intros.
skleene_reflexivity.
Qed.
Lemma test'': forall A (a b: X A A), (a*a+b) <== a*(b*a).
Proof.
intros.
skleene_reflexivity.
Qed.
Lemma test''': forall A (a b: X A A), (a*a+b) <== a*(b*a). Proof. intros. try skleene_reflexivity. Abort. End t. endtests*)
(* parse converts an expression of strict Kleene algebras into an expression of Kleene algebras *)
let rec parse t :=
match t with
| @dot ?G ?O ?A ?B ?C ?x ?y =>
let x := parse x in
let y := parse y in
constr:(@Classes.dot (@oGraph G) (@oMonoid_Ops G O) A B C x y)
| @one ?G ?O ?A =>
constr:(@Classes.one (@oGraph G) (@oMonoid_Ops G O) A)
| @plus ?G ?O ?A ?B ?x ?y =>
let x := parse x in
let y := parse y in
constr:(@Classes.plus (@oGraph G) (@oSemiLattice_Ops G O) A B x y)
| @star ?G ?O ?A ?x =>
let x := parse x in
constr:(@Classes.star (@oGraph G) (@oStar_Op G O) A x)
| _ => constr:(inj t)
end
in
unfold leq;
lazymatch goal with
| |- @equal ?G ?A ?B ?x ?y =>
let x := parse x in
let y := parse y in
apply faithful; change (@equal (@oGraph G) A B x y); kleene_reflexivity
end.
(*begintests
Section t.
Context `{StrictKleeneAlgebra}.
Lemma test: forall A B (a: X A B) (b: X B A), a*(b*a) == (a*b)*a.
Proof.
intros.
skleene_reflexivity.
Qed.
Lemma test': forall A (a b: X A A), (a+b+1) == a*(b*a).
Proof.
intros.
skleene_reflexivity.
Qed.
Lemma test'': forall A (a b: X A A), (a*a+b) <== a*(b*a).
Proof.
intros.
skleene_reflexivity.
Qed.
Lemma test''': forall A (a b: X A A), (a*a+b) <== a*(b*a). Proof. intros. try skleene_reflexivity. Abort. End t. endtests*)