ExtLib.Data.Fun
Require Import ExtLib.Core.Type.
Require Import ExtLib.Data.PreFun.
Require Import ExtLib.Structures.Functor.
Require Import ExtLib.Structures.Applicative.
Require Import ExtLib.Structures.CoFunctor.
Require Import ExtLib.Structures.Monoid.
Set Implicit Arguments.
Set Strict Implicit.
Global Instance proper_id (T : Type) {tT : type T} : proper (fun x => x).
Proof.
repeat red; intros. apply H.
Qed.
Section functors.
Variable A : Type.
Instance FunFunctor A : Functor (Fun A) :=
{ fmap _A _B g f x := g (f x)
}.
Local Instance Functor_Fun : Functor (Fun A) :=
{ fmap _A _B g f x := g (f x) }.
Local Instance CoFunctor_Fun T : CoFunctor (fun x => x -> T) :=
{| cofmap := fun _ _ g f => fun x => f (g x) |}.
Local Instance Functor_functor F G (fF : Functor F) (fG : Functor G) : Functor (fun x => F (G x)) :=
{| fmap := fun _ _ g => @fmap F _ _ _ (@fmap G _ _ _ g) |}.
Local Instance CoFunctor_functor F G (fF : Functor F) (fG : CoFunctor G) : CoFunctor (fun x => F (G x)) :=
{| cofmap := fun _ _ g => @fmap F _ _ _ (@cofmap G _ _ _ g) |}.
Local Instance Functor_cofunctor F G (fF : CoFunctor F) (fG : Functor G) : CoFunctor (fun x => F (G x)) :=
{| cofmap := fun _ _ g => @cofmap F _ _ _ (@fmap G _ _ _ g) |}.
Local Instance CoFunctor_cofunctor F G (fF : CoFunctor F) (fG : CoFunctor G) : Functor (fun x => F (G x)) :=
{| fmap := fun _ _ g => @cofmap F _ _ _ (@cofmap G _ _ _ g) |}.
Local Instance Applicative_Fun : Applicative (Fun A) :=
{ pure := fun _ x _ => x
; ap := fun _ _ f x y => (f y) (x y)
}.
End functors.
Definition Monoid_compose T : Monoid (T -> T) :=
{| monoid_plus g f x := g (f x)
; monoid_unit x := x
|}.
Export PreFun.
Require Import ExtLib.Data.PreFun.
Require Import ExtLib.Structures.Functor.
Require Import ExtLib.Structures.Applicative.
Require Import ExtLib.Structures.CoFunctor.
Require Import ExtLib.Structures.Monoid.
Set Implicit Arguments.
Set Strict Implicit.
Global Instance proper_id (T : Type) {tT : type T} : proper (fun x => x).
Proof.
repeat red; intros. apply H.
Qed.
Section functors.
Variable A : Type.
Instance FunFunctor A : Functor (Fun A) :=
{ fmap _A _B g f x := g (f x)
}.
Local Instance Functor_Fun : Functor (Fun A) :=
{ fmap _A _B g f x := g (f x) }.
Local Instance CoFunctor_Fun T : CoFunctor (fun x => x -> T) :=
{| cofmap := fun _ _ g f => fun x => f (g x) |}.
Local Instance Functor_functor F G (fF : Functor F) (fG : Functor G) : Functor (fun x => F (G x)) :=
{| fmap := fun _ _ g => @fmap F _ _ _ (@fmap G _ _ _ g) |}.
Local Instance CoFunctor_functor F G (fF : Functor F) (fG : CoFunctor G) : CoFunctor (fun x => F (G x)) :=
{| cofmap := fun _ _ g => @fmap F _ _ _ (@cofmap G _ _ _ g) |}.
Local Instance Functor_cofunctor F G (fF : CoFunctor F) (fG : Functor G) : CoFunctor (fun x => F (G x)) :=
{| cofmap := fun _ _ g => @cofmap F _ _ _ (@fmap G _ _ _ g) |}.
Local Instance CoFunctor_cofunctor F G (fF : CoFunctor F) (fG : CoFunctor G) : Functor (fun x => F (G x)) :=
{| fmap := fun _ _ g => @cofmap F _ _ _ (@cofmap G _ _ _ g) |}.
Local Instance Applicative_Fun : Applicative (Fun A) :=
{ pure := fun _ x _ => x
; ap := fun _ _ f x y => (f y) (x y)
}.
End functors.
Definition Monoid_compose T : Monoid (T -> T) :=
{| monoid_plus g f x := g (f x)
; monoid_unit x := x
|}.
Export PreFun.