ExtLib.Data.Monads.IdentityMonadLaws
Require Import Coq.Classes.RelationClasses.
Require Import Setoid.
Require Import ExtLib.Core.Type.
Require Import ExtLib.Data.Fun.
Require Import ExtLib.Structures.Monads.
Require Import ExtLib.Structures.MonadLaws.
Require Import ExtLib.Structures.Proper.
Require Import ExtLib.Data.Monads.IdentityMonad.
Set Implicit Arguments.
Set Strict Implicit.
(*
Section with_T.
Context {T : Type} (e : type T).
Definition equal_ident (a b : ident T) : Prop :=
equal (unIdent a) (unIdent b).
Global Instance type_ident : type (ident T) :=
{ equal := equal_ident
; proper := fun x => proper (unIdent x)
}.
Global Instance typeOk_ident (tT : typeOk e) : typeOk type_ident.
Proof.
constructor.
{ unfold equal, proper, type_ident, equal_ident; simpl; intros.
apply only_proper; auto. }
{ red. destruct x. intros.
red; simpl. red; simpl.
eapply preflexive with (wf := proper); eauto with typeclass_instances. }
{ red. simpl. unfold equal_ident. intros.
symmetry. assumption. }
{ red; simpl. unfold equal_ident. intros.
etransitivity; eassumption. }
Qed.
Global Instance proper_unIdent : proper unIdent.
Proof. red; simpl; red; simpl. destruct x; compute; auto. Qed.
Global Instance proper_mkIdent : proper mkIdent.
Proof. do 7 red. compute; auto. Qed.
End with_T.
(*
Global Instance FunctorOrder_fmleq : FunctorOrder _ (@Identity_leq) _.
Proof.
constructor; eauto with typeclass_instances.
Qed.
*)
Require Import ExtLib.Tactics.TypeTac.
Global Instance MonadLaws_GFix : MonadLaws Monad_ident (@type_ident).
Proof.
constructor; eauto with typeclass_instances; try solve compute; intuition .
{ unfold equal; simpl. intros. red in H2. red; simpl.
eapply H2. eapply preflexive with (wf := proper); auto.
eapply equiv_prefl; auto. }
{ unfold proper, equal; simpl. eauto with typeclass_instances. }
{ simpl; intros. red. solve_equal. }
{ unfold bind, Monad_ident. do 6 red; intros. solve_equal. }
Qed.
*)
Require Import Setoid.
Require Import ExtLib.Core.Type.
Require Import ExtLib.Data.Fun.
Require Import ExtLib.Structures.Monads.
Require Import ExtLib.Structures.MonadLaws.
Require Import ExtLib.Structures.Proper.
Require Import ExtLib.Data.Monads.IdentityMonad.
Set Implicit Arguments.
Set Strict Implicit.
(*
Section with_T.
Context {T : Type} (e : type T).
Definition equal_ident (a b : ident T) : Prop :=
equal (unIdent a) (unIdent b).
Global Instance type_ident : type (ident T) :=
{ equal := equal_ident
; proper := fun x => proper (unIdent x)
}.
Global Instance typeOk_ident (tT : typeOk e) : typeOk type_ident.
Proof.
constructor.
{ unfold equal, proper, type_ident, equal_ident; simpl; intros.
apply only_proper; auto. }
{ red. destruct x. intros.
red; simpl. red; simpl.
eapply preflexive with (wf := proper); eauto with typeclass_instances. }
{ red. simpl. unfold equal_ident. intros.
symmetry. assumption. }
{ red; simpl. unfold equal_ident. intros.
etransitivity; eassumption. }
Qed.
Global Instance proper_unIdent : proper unIdent.
Proof. red; simpl; red; simpl. destruct x; compute; auto. Qed.
Global Instance proper_mkIdent : proper mkIdent.
Proof. do 7 red. compute; auto. Qed.
End with_T.
(*
Global Instance FunctorOrder_fmleq : FunctorOrder _ (@Identity_leq) _.
Proof.
constructor; eauto with typeclass_instances.
Qed.
*)
Require Import ExtLib.Tactics.TypeTac.
Global Instance MonadLaws_GFix : MonadLaws Monad_ident (@type_ident).
Proof.
constructor; eauto with typeclass_instances; try solve compute; intuition .
{ unfold equal; simpl. intros. red in H2. red; simpl.
eapply H2. eapply preflexive with (wf := proper); auto.
eapply equiv_prefl; auto. }
{ unfold proper, equal; simpl. eauto with typeclass_instances. }
{ simpl; intros. red. solve_equal. }
{ unfold bind, Monad_ident. do 6 red; intros. solve_equal. }
Qed.
*)