ExtLib.Data.Fin
Numbers up to @n@
Require Coq.Lists.List.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Tactics.EqDep.
Require Import ExtLib.Tactics.Injection.
Set Implicit Arguments.
Set Strict Implicit.
Set Asymmetric Patterns.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Tactics.EqDep.
Require Import ExtLib.Tactics.Injection.
Set Implicit Arguments.
Set Strict Implicit.
Set Asymmetric Patterns.
Inductive fin : nat -> Type :=
| F0 : forall {n}, fin (S n)
| FS : forall {n}, fin n -> fin (S n).
Fixpoint fin_all (n : nat) : list (fin n) :=
match n as n return list (fin n) with
| 0 => nil
| S n => @F0 n :: List.map (@FS _) (fin_all n)
end%list.
Theorem fin_all_In : forall {n} (f : fin n),
List.In f (fin_all n).
Proof.
induction n; intros.
inversion f.
remember (S n). destruct f.
simpl; firstorder.
inversion Heqn0. subst.
simpl. right. apply List.in_map. auto.
Qed.
Theorem fin_case : forall n (f : fin (S n)),
f = F0 \/ exists f', f = FS f'.
Proof.
intros. generalize (fin_all_In f). intros.
destruct H; auto.
eapply List.in_map_iff in H. right. destruct H.
exists x. intuition.
Qed.
Definition fin0_elim (f : fin 0) : forall T, T :=
match f in fin n return match n with
| 0 => forall T, T
| _ => unit
end with
| F0 _ => tt
| FS _ _ => tt
end.
Fixpoint pf_lt (n m : nat) : Prop :=
match n , m with
| 0 , S _ => True
| S n , S m => pf_lt n m
| _ , _ => False
end.
Fixpoint make (m n : nat) {struct m} : pf_lt n m -> fin m :=
match n as n , m as m return pf_lt n m -> fin m with
| 0 , 0 => @False_rect _
| 0 , S n => fun _ => F0
| S n , 0 => @False_rect _
| S n , S m => fun pf => FS (make m n pf)
end.
Notation "'##' n" := (@make _ n I) (at level 0).
Global Instance Injective_FS {n : nat} (a b : fin n)
: Injective (FS a = FS b).
refine {| result := a = b |}.
abstract (intro ; inversion H ; eapply inj_pair2 in H1 ; assumption).
Defined.
Fixpoint fin_eq_dec {n} (x : fin n) {struct x} : fin n -> bool :=
match x in fin n' return fin n' -> bool with
| F0 _ => fun y => match y with
| F0 _ => true
| _ => false
end
| FS n' x' => fun y : fin (S n') =>
match y in fin n'' return (match n'' with
| 0 => unit
| S n'' => fin n''
end -> bool) -> bool with
| F0 _ => fun _ => false
| FS _ y' => fun f => f y'
end (fun y => fin_eq_dec x' y)
end.
Global Instance RelDec_fin_eq (n : nat) : RelDec (@eq (fin n)) :=
{ rel_dec := fin_eq_dec }.
Global Instance RelDec_Correct_fin_eq (n : nat)
: RelDec_Correct (RelDec_fin_eq n).
Proof.
constructor.
induction x. simpl.
intro. destruct (fin_case y) ; subst.
intuition.
destruct H ; subst.
intuition ; try congruence.
(* inversion H.*)
intro ; destruct (fin_case y) ; subst ; simpl.
intuition ; try congruence.
inversion H.
destruct H ; subst.
split ; intro.
f_equal ; eauto.
eapply IHx.
eapply H.
inv_all ; subst.
apply IHx. reflexivity.
Qed.
| F0 : forall {n}, fin (S n)
| FS : forall {n}, fin n -> fin (S n).
Fixpoint fin_all (n : nat) : list (fin n) :=
match n as n return list (fin n) with
| 0 => nil
| S n => @F0 n :: List.map (@FS _) (fin_all n)
end%list.
Theorem fin_all_In : forall {n} (f : fin n),
List.In f (fin_all n).
Proof.
induction n; intros.
inversion f.
remember (S n). destruct f.
simpl; firstorder.
inversion Heqn0. subst.
simpl. right. apply List.in_map. auto.
Qed.
Theorem fin_case : forall n (f : fin (S n)),
f = F0 \/ exists f', f = FS f'.
Proof.
intros. generalize (fin_all_In f). intros.
destruct H; auto.
eapply List.in_map_iff in H. right. destruct H.
exists x. intuition.
Qed.
Definition fin0_elim (f : fin 0) : forall T, T :=
match f in fin n return match n with
| 0 => forall T, T
| _ => unit
end with
| F0 _ => tt
| FS _ _ => tt
end.
Fixpoint pf_lt (n m : nat) : Prop :=
match n , m with
| 0 , S _ => True
| S n , S m => pf_lt n m
| _ , _ => False
end.
Fixpoint make (m n : nat) {struct m} : pf_lt n m -> fin m :=
match n as n , m as m return pf_lt n m -> fin m with
| 0 , 0 => @False_rect _
| 0 , S n => fun _ => F0
| S n , 0 => @False_rect _
| S n , S m => fun pf => FS (make m n pf)
end.
Notation "'##' n" := (@make _ n I) (at level 0).
Global Instance Injective_FS {n : nat} (a b : fin n)
: Injective (FS a = FS b).
refine {| result := a = b |}.
abstract (intro ; inversion H ; eapply inj_pair2 in H1 ; assumption).
Defined.
Fixpoint fin_eq_dec {n} (x : fin n) {struct x} : fin n -> bool :=
match x in fin n' return fin n' -> bool with
| F0 _ => fun y => match y with
| F0 _ => true
| _ => false
end
| FS n' x' => fun y : fin (S n') =>
match y in fin n'' return (match n'' with
| 0 => unit
| S n'' => fin n''
end -> bool) -> bool with
| F0 _ => fun _ => false
| FS _ y' => fun f => f y'
end (fun y => fin_eq_dec x' y)
end.
Global Instance RelDec_fin_eq (n : nat) : RelDec (@eq (fin n)) :=
{ rel_dec := fin_eq_dec }.
Global Instance RelDec_Correct_fin_eq (n : nat)
: RelDec_Correct (RelDec_fin_eq n).
Proof.
constructor.
induction x. simpl.
intro. destruct (fin_case y) ; subst.
intuition.
destruct H ; subst.
intuition ; try congruence.
(* inversion H.*)
intro ; destruct (fin_case y) ; subst ; simpl.
intuition ; try congruence.
inversion H.
destruct H ; subst.
split ; intro.
f_equal ; eauto.
eapply IHx.
eapply H.
inv_all ; subst.
apply IHx. reflexivity.
Qed.