ExtLib.Data.ListNth
Require Import Coq.Lists.List.
Set Implicit Arguments.
Set Strict Implicit.
Section parametric.
Variable T : Type.
Lemma nth_error_app_L : forall (A B : list T) n,
n < length A ->
nth_error (A ++ B) n = nth_error A n.
Proof.
induction A; destruct n; simpl; intros; auto.
{ inversion H. }
{ inversion H. }
{ eapply IHA. apply Lt.lt_S_n; assumption. }
Qed.
Lemma nth_error_app_R : forall (A B : list T) n,
length A <= n ->
nth_error (A ++ B) n = nth_error B (n - length A).
Proof.
induction A; destruct n; simpl; intros; auto.
+ inversion H.
+ apply IHA. apply Le.le_S_n; assumption.
Qed.
Lemma nth_error_weaken : forall ls' (ls : list T) n v,
nth_error ls n = Some v ->
nth_error (ls ++ ls') n = Some v.
Proof.
clear. induction ls; destruct n; simpl; intros; unfold value, error in *; try congruence; auto.
Qed.
Lemma nth_error_nil : forall n,
nth_error nil n = @None T.
Proof.
destruct n; reflexivity.
Qed.
Lemma nth_error_past_end : forall (ls : list T) n,
length ls <= n ->
nth_error ls n = None.
Proof.
clear. induction ls; destruct n; simpl; intros; auto.
+ inversion H.
+ apply IHls. apply Le.le_S_n; assumption.
Qed.
Lemma nth_error_length : forall (ls ls' : list T) n,
nth_error (ls ++ ls') (n + length ls) = nth_error ls' n.
Proof.
induction ls; simpl; intros.
rewrite Plus.plus_0_r. auto.
rewrite <- Plus.plus_Snm_nSm.
simpl. eapply IHls.
Qed.
Theorem nth_error_length_ge : forall T (ls : list T) n,
nth_error ls n = None -> length ls <= n.
Proof.
induction ls; destruct n; simpl in *; auto; simpl in *.
+ intro. apply Le.le_0_n.
+ inversion 1.
+ intros. eapply Le.le_n_S. auto.
Qed.
Lemma nth_error_length_lt : forall {T} (ls : list T) n val,
nth_error ls n = Some val -> n < length ls.
Proof.
induction ls; destruct n; simpl; intros; auto.
+ inversion H.
+ inversion H.
+ apply Lt.lt_0_Sn.
+ apply Lt.lt_n_S. eauto.
Qed.
Theorem nth_error_map : forall U (f : T -> U) ls n,
nth_error (map f ls) n = match nth_error ls n with
| None => None
| Some x => Some (f x)
end.
Proof.
induction ls; destruct n; simpl; auto.
Qed.
End parametric.
Set Implicit Arguments.
Set Strict Implicit.
Section parametric.
Variable T : Type.
Lemma nth_error_app_L : forall (A B : list T) n,
n < length A ->
nth_error (A ++ B) n = nth_error A n.
Proof.
induction A; destruct n; simpl; intros; auto.
{ inversion H. }
{ inversion H. }
{ eapply IHA. apply Lt.lt_S_n; assumption. }
Qed.
Lemma nth_error_app_R : forall (A B : list T) n,
length A <= n ->
nth_error (A ++ B) n = nth_error B (n - length A).
Proof.
induction A; destruct n; simpl; intros; auto.
+ inversion H.
+ apply IHA. apply Le.le_S_n; assumption.
Qed.
Lemma nth_error_weaken : forall ls' (ls : list T) n v,
nth_error ls n = Some v ->
nth_error (ls ++ ls') n = Some v.
Proof.
clear. induction ls; destruct n; simpl; intros; unfold value, error in *; try congruence; auto.
Qed.
Lemma nth_error_nil : forall n,
nth_error nil n = @None T.
Proof.
destruct n; reflexivity.
Qed.
Lemma nth_error_past_end : forall (ls : list T) n,
length ls <= n ->
nth_error ls n = None.
Proof.
clear. induction ls; destruct n; simpl; intros; auto.
+ inversion H.
+ apply IHls. apply Le.le_S_n; assumption.
Qed.
Lemma nth_error_length : forall (ls ls' : list T) n,
nth_error (ls ++ ls') (n + length ls) = nth_error ls' n.
Proof.
induction ls; simpl; intros.
rewrite Plus.plus_0_r. auto.
rewrite <- Plus.plus_Snm_nSm.
simpl. eapply IHls.
Qed.
Theorem nth_error_length_ge : forall T (ls : list T) n,
nth_error ls n = None -> length ls <= n.
Proof.
induction ls; destruct n; simpl in *; auto; simpl in *.
+ intro. apply Le.le_0_n.
+ inversion 1.
+ intros. eapply Le.le_n_S. auto.
Qed.
Lemma nth_error_length_lt : forall {T} (ls : list T) n val,
nth_error ls n = Some val -> n < length ls.
Proof.
induction ls; destruct n; simpl; intros; auto.
+ inversion H.
+ inversion H.
+ apply Lt.lt_0_Sn.
+ apply Lt.lt_n_S. eauto.
Qed.
Theorem nth_error_map : forall U (f : T -> U) ls n,
nth_error (map f ls) n = match nth_error ls n with
| None => None
| Some x => Some (f x)
end.
Proof.
induction ls; destruct n; simpl; auto.
Qed.
End parametric.