ExtLib.Data.ListFirstnSkipn
Require Import Coq.Lists.List.
Require Import Coq.ZArith.ZArith.
Lemma firstn_app_L : forall T n (a b : list T),
n <= length a ->
firstn n (a ++ b) = firstn n a.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
f_equal. eapply IHn; eauto. omega.
Qed.
Lemma firstn_app_R : forall T n (a b : list T),
length a <= n ->
firstn n (a ++ b) = a ++ firstn (n - length a) b.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
f_equal. eapply IHn; eauto. omega.
Qed.
Lemma firstn_all : forall T n (a : list T),
length a <= n ->
firstn n a = a.
Proof.
induction n; destruct a; simpl; intros; auto.
exfalso; omega.
simpl. f_equal. eapply IHn; omega.
Qed.
Lemma firstn_0 : forall T n (a : list T),
n = 0 ->
firstn n a = nil.
Proof.
intros; subst; auto.
Qed.
Lemma firstn_cons : forall T n a (b : list T),
0 < n ->
firstn n (a :: b) = a :: firstn (n - 1) b.
Proof.
destruct n; intros.
omega.
simpl. replace (n - 0) with n; [ | omega ]. reflexivity.
Qed.
Hint Rewrite firstn_app_L firstn_app_R firstn_all firstn_0 firstn_cons using omega : list_rw.
Lemma skipn_app_R : forall T n (a b : list T),
length a <= n ->
skipn n (a ++ b) = skipn (n - length a) b.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
eapply IHn. omega.
Qed.
Lemma skipn_app_L : forall T n (a b : list T),
n <= length a ->
skipn n (a ++ b) = (skipn n a) ++ b.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
eapply IHn. omega.
Qed.
Lemma skipn_0 : forall T n (a : list T),
n = 0 ->
skipn n a = a.
Proof.
intros; subst; auto.
Qed.
Lemma skipn_all : forall T n (a : list T),
length a <= n ->
skipn n a = nil.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
apply IHn; omega.
Qed.
Lemma skipn_cons : forall T n a (b : list T),
0 < n ->
skipn n (a :: b) = skipn (n - 1) b.
Proof.
destruct n; intros.
omega.
simpl. replace (n - 0) with n; [ | omega ]. reflexivity.
Qed.
Hint Rewrite skipn_app_L skipn_app_R skipn_0 skipn_all skipn_cons using omega : list_rw.
Require Import Coq.ZArith.ZArith.
Lemma firstn_app_L : forall T n (a b : list T),
n <= length a ->
firstn n (a ++ b) = firstn n a.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
f_equal. eapply IHn; eauto. omega.
Qed.
Lemma firstn_app_R : forall T n (a b : list T),
length a <= n ->
firstn n (a ++ b) = a ++ firstn (n - length a) b.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
f_equal. eapply IHn; eauto. omega.
Qed.
Lemma firstn_all : forall T n (a : list T),
length a <= n ->
firstn n a = a.
Proof.
induction n; destruct a; simpl; intros; auto.
exfalso; omega.
simpl. f_equal. eapply IHn; omega.
Qed.
Lemma firstn_0 : forall T n (a : list T),
n = 0 ->
firstn n a = nil.
Proof.
intros; subst; auto.
Qed.
Lemma firstn_cons : forall T n a (b : list T),
0 < n ->
firstn n (a :: b) = a :: firstn (n - 1) b.
Proof.
destruct n; intros.
omega.
simpl. replace (n - 0) with n; [ | omega ]. reflexivity.
Qed.
Hint Rewrite firstn_app_L firstn_app_R firstn_all firstn_0 firstn_cons using omega : list_rw.
Lemma skipn_app_R : forall T n (a b : list T),
length a <= n ->
skipn n (a ++ b) = skipn (n - length a) b.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
eapply IHn. omega.
Qed.
Lemma skipn_app_L : forall T n (a b : list T),
n <= length a ->
skipn n (a ++ b) = (skipn n a) ++ b.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
eapply IHn. omega.
Qed.
Lemma skipn_0 : forall T n (a : list T),
n = 0 ->
skipn n a = a.
Proof.
intros; subst; auto.
Qed.
Lemma skipn_all : forall T n (a : list T),
length a <= n ->
skipn n a = nil.
Proof.
induction n; destruct a; simpl in *; intros; auto.
exfalso; omega.
apply IHn; omega.
Qed.
Lemma skipn_cons : forall T n a (b : list T),
0 < n ->
skipn n (a :: b) = skipn (n - 1) b.
Proof.
destruct n; intros.
omega.
simpl. replace (n - 0) with n; [ | omega ]. reflexivity.
Qed.
Hint Rewrite skipn_app_L skipn_app_R skipn_0 skipn_all skipn_cons using omega : list_rw.