ExtLib.Structures.Monad

Require Import ExtLib.Core.Any.
Require Import ExtLib.Structures.Functor.
Require Import ExtLib.Structures.Applicative.

Set Implicit Arguments.
Set Strict Implicit.
Set Universe Polymorphism.

Class Monad@{d c} (m : Type@{d} -> Type@{c}) : Type :=
{ ret : forall {t : Type@{d}}, t -> m t
; bind : forall {t u : Type@{d}}, m t -> (t -> m u) -> m u
}.

Section monadic.

  Definition liftM@{d c}
              {m : Type@{d} -> Type@{c}}
              {M : Monad m}
              {T U : Type@{d}} (f : T -> U) : m T -> m U :=
    fun x => bind x (fun x => ret (f x)).

  Definition liftM2@{d c}
              {m : Type@{d} -> Type@{c}}
              {M : Monad m}
              {T U V : Type@{d}} (f : T -> U -> V) : m T -> m U -> m V :=
    Eval cbv beta iota zeta delta [ liftM ] in
      fun x y => bind x (fun x => liftM (f x) y).

  Definition liftM3@{d c}
              {m : Type@{d} -> Type@{c}}
              {M : Monad m}
              {T U V W : Type@{d}} (f : T -> U -> V -> W) : m T -> m U -> m V -> m W :=
    Eval cbv beta iota zeta delta [ liftM2 ] in
      fun x y z => bind x (fun x => liftM2 (f x) y z).

  Definition apM@{d c}
              {m : Type@{d} -> Type@{c}}
              {M : Monad m}
              {A B : Type@{d}} (fM:m (A -> B)) (aM:m A) : m B :=
    bind fM (fun f => liftM f aM).

  (* Left-to-right composition of Kleisli arrows. *)
  Definition mcompose@{c d}
             {m:Type@{d}->Type@{c}}
             {M: Monad m}
             {T U V:Type@{d}}
             (f: T -> m U) (g: U -> m V): (T -> m V) :=
    fun x => bind (f x) g.

End monadic.

Module MonadBaseNotation.

  Delimit Scope monad_scope with monad.

  Notation "c >>= f" := (@bind _ _ _ _ c f) (at level 58, left associativity) : monad_scope.
  Notation "f =<< c" := (@bind _ _ _ _ c f) (at level 61, right associativity) : monad_scope.
  Notation "f >=> g" := (@mcompose _ _ _ _ _ f g) (at level 61, right associativity) : monad_scope.

  Notation "e1 ;; e2" := (@bind _ _ _ _ e1%monad (fun _ => e2%monad))%monad
    (at level 61, right associativity) : monad_scope.

End MonadBaseNotation.

Module MonadNotation.

  Export MonadBaseNotation.

  Notation "x <- c1 ;; c2" := (@bind _ _ _ _ c1 (fun x => c2))
    (at level 61, c1 at next level, right associativity) : monad_scope.

  Notation "' pat <- c1 ;; c2" :=
    (@bind _ _ _ _ c1 (fun x => match x with pat => c2 end))
    (at level 61, pat pattern, c1 at next level, right associativity) : monad_scope.

End MonadNotation.

Module MonadLetNotation.

  Export MonadBaseNotation.

  Notation "'let*' x ':=' c1 'in' c2" := (@bind _ _ _ _ c1 (fun x => c2))
    (at level 61, c1 at next level, right associativity) : monad_scope.

End MonadLetNotation.

Section Instances.

Universe d c.
Context (m : Type@{d} -> Type@{c}) {M : Monad m}.

Global Instance Functor_Monad@{} : Functor m :=
{ fmap := @liftM _ _ }.

Global Instance Applicative_Monad@{} : Applicative m :=
{ pure := @ret _ _
; ap := @apM _ _
}.

End Instances.