ExtLib.Tactics.Consider

The consider tactic recovers some of the ease of reasoning about decision procedures when they are implemented as functions into bool. ** Implementation by Thomas Braibant (thomas.braibant@gmail.com)
(*Require Setoid. *)

This file defines some inductives, type-classes and tactics to perform reflection on a small scale
Two inductives to perform case-based reasonning
Inductive reflect (P Q : Prop) : bool -> Type :=
| reflect_true : P -> reflect P Q true
| reflect_false : Q -> reflect P Q false.

Inductive semi_reflect (P : Prop) : bool -> Type :=
| semi_reflect_true : P -> semi_reflect P true
| semi_reflect_false : semi_reflect P false.

Lemma iff_to_reflect {A B} (P : A -> B -> Prop) (T : A -> B -> bool) :
  (forall x y, T x y = true <-> P x y) ->
  (forall x y, reflect (P x y) (~P x y) (T x y)).
Proof.
  intros. case_eq (T x y); intros Hxy; constructor.
  apply H. assumption.
  intros Hf. apply H in Hf. congruence.
Qed.

Lemma impl_to_semireflect {A B} (P : A -> B -> Prop) (T : A -> B -> bool) :
  (forall x y, T x y = true -> P x y) ->
  (forall x y, semi_reflect (P x y) (T x y)).
Proof.
  intros. case_eq (T x y); intros Hxy; constructor.
  apply H; auto.
Qed.

Lemma reflect_true_inv P Q : reflect P Q true -> P.
Proof.
  exact (fun x => match x in reflect _ _ b
                    return if b then P else ID
                 with | reflect_true _ _ H => H | reflect_false _ _ H => (fun _ x => x) end).
Qed.

Lemma reflect_false_inv P Q : reflect P Q false -> Q.
Proof.
  exact (fun x => match x in reflect _ _ b
                    return if b then ID else Q
                 with | reflect_true _ _ H => fun _ x => x | reflect_false _ _ H => H end).
Qed.

Lemma semi_reflect_true_inv P : semi_reflect P true -> P.
Proof.
  exact (fun x => match x in semi_reflect _ b
                    return if b then P else ID
                 with | semi_reflect_true _ H => H | semi_reflect_false _ => (fun _ x => x) end).
Qed.

Class Reflect (T : bool) (P Q : Prop) := _Reflect : reflect P Q T.
Class SemiReflect (T : bool) (P : Prop) := _SemiReflect : semi_reflect P T.

Section boolean_logic.
  Ltac t :=
    repeat match goal with
           | H: Reflect true ?P ?Q |- _ => apply (reflect_true_inv P Q) in H
           | H: Reflect false ?P ?Q |- _ => apply (reflect_false_inv P Q) in H
           end.

  Context {T1 T2 P1 Q1 P2 Q2} {R1 : Reflect T1 P1 Q1} {R2: Reflect T2 P2 Q2}.

  Global Instance Reflect_andb : Reflect (T1 && T2)%bool (P1 /\ P2) (Q1 \/ Q2).
  Proof.
    destruct T1; destruct T2; t; constructor; tauto.
  Qed.

  Global Instance Reflect_orb : Reflect (T1 || T2)%bool (P1 \/ P2) (Q1 /\ Q2).
  Proof.
    destruct T1; destruct T2; t; constructor; tauto.
  Qed.

  Global Instance Reflect_negb : Reflect (negb T1)%bool Q1 P1.
  Proof.
    destruct T1; t; constructor; tauto.
  Qed.

End boolean_logic.

Require Import ExtLib.Core.RelDec.

Section from_rel_dec.
  Variable T : Type.
  Variable eqt : T -> T -> Prop.
  Variable rd : RelDec eqt.
  Variable rdc : RelDec_Correct rd.

  Global Instance Reflect_RelDecCorrect (a b : T)
  : Reflect (rel_dec a b) (eqt a b) (~(eqt a b)).
  Proof.
    eapply iff_to_reflect.
    eapply rel_dec_correct.
  Qed.
End from_rel_dec.

Hint Extern 10 (@Reflect (?f ?a ?b) _ _) =>
  eapply (@Reflect_RelDecCorrect _ _ (@Build_RelDec _ _ f) _) : typeclass_instances.

The main tactic. consider f will perform case-analysis (using case) on the function symbol f using a reflection-lemma that is inferred by type-class resolution.

Ltac consider f :=
  let rec clean :=
    match goal with
      | |- true = true -> _ => intros _ ; clean
      | |- false = true -> _ => discriminate
      | |- ?P1 -> ?P2 =>
        let H := fresh in intros H ; clean; revert H
      | |- _ => idtac
    end
  in
  (repeat match goal with
            | [ H : context [ f ] |- _ ] =>
              revert H
          end) ;
  match type of f with
    | sumbool _ _ =>
      destruct f
    | _ =>
      match goal with
        | _ =>
          ((let c := constr:(_ : Reflect f _ _) in
            case c)) (*;
            let H := fresh in
            intros H; try rewrite H; revert H)) *)

        | _ =>
          ((let c := constr:(_ : SemiReflect f _) in
            case c)) (*;
            let H := fresh in
            try (intros H; try rewrite H; revert H))) *)

        | _ =>
          
default to remembering the equality
          case_eq f
      end
  end ; clean.