ExtLib.Data.Eq
This file gives some equational properties for manipulating matches.
Set Implicit Arguments.
Set Strict Implicit.
For backwards compatibility with hint locality attributes.
Set Warnings "-unsupported-attributes".
Create HintDb eq_rw discriminated.
Lemma eq_sym_eq
: forall T (a b : T) (pf : a = b) (F : T -> Type) val,
match eq_sym pf in _ = x return F x with
| eq_refl => val
end =
match pf in _ = x return F x -> F a with
| eq_refl => fun x => x
end val.
Proof.
destruct pf. reflexivity.
Defined.
Lemma match_eq_sym_eq
: forall T (a b : T) (pf : a = b) F X,
match pf in _ = t return F t with
| eq_refl => match eq_sym pf in _ = t return F t with
| eq_refl => X
end
end = X.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite match_eq_sym_eq : eq_rw.
Lemma match_eq_sym_eq'
: forall T (a b : T) (pf : a = b) F X,
match eq_sym pf in _ = t return F t with
| eq_refl => match pf in _ = t return F t with
| eq_refl => X
end
end = X.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite match_eq_sym_eq' : eq_rw.
Lemma match_eq_match_eq
: forall T F (a b : T) (pf : a = b) X Y,
X = Y ->
match pf in _ = T return F T with
| eq_refl => X
end =
match pf in _ = T return F T with
| eq_refl => Y
end.
Proof.
intros. subst. auto.
Defined.
Lemma eq_sym_eq_trans
: forall T (a b c : T) (pf : a = b) (pf' : b = c),
eq_sym (eq_trans pf pf') =
eq_trans (eq_sym pf') (eq_sym pf).
Proof.
clear. destruct pf. destruct pf'. reflexivity.
Defined.
Create HintDb eq_rw discriminated.
Lemma eq_sym_eq
: forall T (a b : T) (pf : a = b) (F : T -> Type) val,
match eq_sym pf in _ = x return F x with
| eq_refl => val
end =
match pf in _ = x return F x -> F a with
| eq_refl => fun x => x
end val.
Proof.
destruct pf. reflexivity.
Defined.
Lemma match_eq_sym_eq
: forall T (a b : T) (pf : a = b) F X,
match pf in _ = t return F t with
| eq_refl => match eq_sym pf in _ = t return F t with
| eq_refl => X
end
end = X.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite match_eq_sym_eq : eq_rw.
Lemma match_eq_sym_eq'
: forall T (a b : T) (pf : a = b) F X,
match eq_sym pf in _ = t return F t with
| eq_refl => match pf in _ = t return F t with
| eq_refl => X
end
end = X.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite match_eq_sym_eq' : eq_rw.
Lemma match_eq_match_eq
: forall T F (a b : T) (pf : a = b) X Y,
X = Y ->
match pf in _ = T return F T with
| eq_refl => X
end =
match pf in _ = T return F T with
| eq_refl => Y
end.
Proof.
intros. subst. auto.
Defined.
Lemma eq_sym_eq_trans
: forall T (a b c : T) (pf : a = b) (pf' : b = c),
eq_sym (eq_trans pf pf') =
eq_trans (eq_sym pf') (eq_sym pf).
Proof.
clear. destruct pf. destruct pf'. reflexivity.
Defined.
Particular Instances
Lemma eq_Const_eq
: forall T (a b : T) (pf : a = b) (R : Type) val,
match pf in _ = x return R with
| eq_refl => val
end = val.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite eq_Const_eq : eq_rw.
Lemma eq_Arr_eq
: forall T (a b : T) (pf : a = b) (F G : T -> Type) val x,
match pf in _ = x return F x -> G x with
| eq_refl => val
end x =
match pf in _ = x return G x with
| eq_refl => val match eq_sym pf in _ = x return F x with
| eq_refl => x
end
end.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite eq_Arr_eq : eq_rw.
Lemma eq_sym_eq_sym : forall (T : Type) (a b : T) (pf : a = b),
eq_sym (eq_sym pf) = pf.
Proof. destruct pf. reflexivity. Defined.
#[global]
Hint Rewrite eq_sym_eq_sym : eq_rw.
Ltac autorewrite_eq_rw :=
repeat progress (autorewrite with eq_rw;
repeat match goal with
| |- context [ match ?X in @eq _ _ _ return _ -> _ with
| eq_refl => _
end ] => rewrite (eq_Arr_eq X)
end).
Require Export ExtLib.Data.Eq.UIP_trans.
: forall T (a b : T) (pf : a = b) (R : Type) val,
match pf in _ = x return R with
| eq_refl => val
end = val.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite eq_Const_eq : eq_rw.
Lemma eq_Arr_eq
: forall T (a b : T) (pf : a = b) (F G : T -> Type) val x,
match pf in _ = x return F x -> G x with
| eq_refl => val
end x =
match pf in _ = x return G x with
| eq_refl => val match eq_sym pf in _ = x return F x with
| eq_refl => x
end
end.
Proof.
destruct pf. reflexivity.
Defined.
#[global]
Hint Rewrite eq_Arr_eq : eq_rw.
Lemma eq_sym_eq_sym : forall (T : Type) (a b : T) (pf : a = b),
eq_sym (eq_sym pf) = pf.
Proof. destruct pf. reflexivity. Defined.
#[global]
Hint Rewrite eq_sym_eq_sym : eq_rw.
Ltac autorewrite_eq_rw :=
repeat progress (autorewrite with eq_rw;
repeat match goal with
| |- context [ match ?X in @eq _ _ _ return _ -> _ with
| eq_refl => _
end ] => rewrite (eq_Arr_eq X)
end).
Require Export ExtLib.Data.Eq.UIP_trans.