ExtLib.Data.Nat
From Coq.Arith Require Arith.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Structures.Monoid.
Require Import ExtLib.Tactics.Consider.
Require Import ExtLib.Tactics.Injection.
Set Implicit Arguments.
Set Strict Implicit.
Global Instance RelDec_eq : RelDec (@eq nat) :=
{ rel_dec := Nat.eqb }.
Global Instance RelDec_lt : RelDec lt :=
{ rel_dec := Nat.ltb }.
Global Instance RelDec_le : RelDec le :=
{ rel_dec := Nat.leb }.
Global Instance RelDec_gt : RelDec gt :=
{ rel_dec := fun x y => Nat.ltb y x }.
Global Instance RelDec_ge : RelDec ge :=
{ rel_dec := fun x y => Nat.leb y x }.
Global Instance RelDecCorrect_eq : RelDec_Correct RelDec_eq.
Proof.
constructor; simpl. apply PeanoNat.Nat.eqb_eq.
Qed.
Global Instance RelDecCorrect_lt : RelDec_Correct RelDec_lt.
Proof.
constructor; simpl. eapply PeanoNat.Nat.ltb_lt.
Qed.
Global Instance RelDecCorrect_le : RelDec_Correct RelDec_le.
Proof.
constructor; simpl. eapply PeanoNat.Nat.leb_le.
Qed.
Global Instance RelDecCorrect_gt : RelDec_Correct RelDec_gt.
Proof.
constructor; simpl. unfold rel_dec; simpl.
intros. eapply PeanoNat.Nat.ltb_lt.
Qed.
Global Instance RelDecCorrect_ge : RelDec_Correct RelDec_ge.
Proof.
constructor; simpl. unfold rel_dec; simpl.
intros. eapply PeanoNat.Nat.leb_le.
Qed.
Inductive R_nat_S : nat -> nat -> Prop :=
| R_S : forall n, R_nat_S n (S n).
Theorem wf_R_S : well_founded R_nat_S.
Proof.
red; induction a; constructor; intros.
inversion H.
inversion H; subst; auto.
Defined.
Inductive R_nat_lt : nat -> nat -> Prop :=
| R_lt : forall n m, n < m -> R_nat_lt n m.
Theorem wf_R_lt : well_founded R_nat_lt.
Proof.
red; induction a; constructor; intros.
{ inversion H. exfalso. subst. inversion H0. }
{ inversion H; clear H; subst. inversion H0; clear H0; subst; auto.
inversion IHa. eapply H. constructor. eapply H1. }
Defined.
Definition Monoid_nat_plus : Monoid nat :=
{| monoid_plus := plus
; monoid_unit := 0
|}.
Definition Monoid_nat_mult : Monoid nat :=
{| monoid_plus := mult
; monoid_unit := 1
|}.
Global Instance Injective_S (a b : nat) : Injective (S a = S b).
refine {| result := a = b |}.
abstract (inversion 1; auto).
Defined.
Definition nat_get_eq (n m : nat) (pf : unit -> n = m) : n = m :=
match PeanoNat.Nat.eq_dec n m with
| left pf => pf
| right bad => match bad (pf tt) with end
end.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Structures.Monoid.
Require Import ExtLib.Tactics.Consider.
Require Import ExtLib.Tactics.Injection.
Set Implicit Arguments.
Set Strict Implicit.
Global Instance RelDec_eq : RelDec (@eq nat) :=
{ rel_dec := Nat.eqb }.
Global Instance RelDec_lt : RelDec lt :=
{ rel_dec := Nat.ltb }.
Global Instance RelDec_le : RelDec le :=
{ rel_dec := Nat.leb }.
Global Instance RelDec_gt : RelDec gt :=
{ rel_dec := fun x y => Nat.ltb y x }.
Global Instance RelDec_ge : RelDec ge :=
{ rel_dec := fun x y => Nat.leb y x }.
Global Instance RelDecCorrect_eq : RelDec_Correct RelDec_eq.
Proof.
constructor; simpl. apply PeanoNat.Nat.eqb_eq.
Qed.
Global Instance RelDecCorrect_lt : RelDec_Correct RelDec_lt.
Proof.
constructor; simpl. eapply PeanoNat.Nat.ltb_lt.
Qed.
Global Instance RelDecCorrect_le : RelDec_Correct RelDec_le.
Proof.
constructor; simpl. eapply PeanoNat.Nat.leb_le.
Qed.
Global Instance RelDecCorrect_gt : RelDec_Correct RelDec_gt.
Proof.
constructor; simpl. unfold rel_dec; simpl.
intros. eapply PeanoNat.Nat.ltb_lt.
Qed.
Global Instance RelDecCorrect_ge : RelDec_Correct RelDec_ge.
Proof.
constructor; simpl. unfold rel_dec; simpl.
intros. eapply PeanoNat.Nat.leb_le.
Qed.
Inductive R_nat_S : nat -> nat -> Prop :=
| R_S : forall n, R_nat_S n (S n).
Theorem wf_R_S : well_founded R_nat_S.
Proof.
red; induction a; constructor; intros.
inversion H.
inversion H; subst; auto.
Defined.
Inductive R_nat_lt : nat -> nat -> Prop :=
| R_lt : forall n m, n < m -> R_nat_lt n m.
Theorem wf_R_lt : well_founded R_nat_lt.
Proof.
red; induction a; constructor; intros.
{ inversion H. exfalso. subst. inversion H0. }
{ inversion H; clear H; subst. inversion H0; clear H0; subst; auto.
inversion IHa. eapply H. constructor. eapply H1. }
Defined.
Definition Monoid_nat_plus : Monoid nat :=
{| monoid_plus := plus
; monoid_unit := 0
|}.
Definition Monoid_nat_mult : Monoid nat :=
{| monoid_plus := mult
; monoid_unit := 1
|}.
Global Instance Injective_S (a b : nat) : Injective (S a = S b).
refine {| result := a = b |}.
abstract (inversion 1; auto).
Defined.
Definition nat_get_eq (n m : nat) (pf : unit -> n = m) : n = m :=
match PeanoNat.Nat.eq_dec n m with
| left pf => pf
| right bad => match bad (pf tt) with end
end.