Huffman.ISort
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(***********************************************************************)
(* Proof of Huffman algorithm: ISort.v *)
(* *)
(* Definition of sorting by insertion and its proof of correctness *)
(* *)
(* Definitions: isort, insert *)
(* *)
(* Laurent.Thery@inria.fr (2003) *)
(***********************************************************************)
Require Import List.
From Huffman Require Import Permutation.
From Huffman Require Import Ordered.
From Huffman Require Import sTactic.
Section ISortExample.
Variable A : Type.
Variable order : A -> A -> Prop.
Variable order_fun : A -> A -> bool.
Hypothesis order_fun_true : forall a b : A, order_fun a b = true -> order a b.
Hypothesis order_fun_false : forall a b : A, order_fun a b = false -> order b a.
(* Insert an element *)
Fixpoint insert (a : A) (l : list A) {struct l} : list A :=
match l with
| nil => a :: nil
| b :: l1 =>
match order_fun a b with
| true => a :: l
| false => b :: insert a l1
end
end.
(* Inserting preserves ordering *)
Theorem insert_ordered :
forall l : list A,
ordered order l -> forall a : A, ordered order (insert a l).
Proof using order_fun_false order_fun_true.
intros l H'; elim H'; clear H' l; auto.
simpl in |- *; auto.
intros a b; simpl in |- *.
generalize (refl_equal (order_fun b a));
pattern (order_fun b a) at -1 in |- *; case (order_fun b a);
intros Eq0; auto.
intros a b l H'0 H'1 H'2 a0.
simpl in |- *.
generalize (refl_equal (order_fun a0 a));
pattern (order_fun a0 a) at -1 in |- *; case (order_fun a0 a);
intros Eq0; auto.
generalize (H'2 a0); simpl in |- *.
generalize (refl_equal (order_fun a0 b));
pattern (order_fun a0 b) at -1 in |- *; case (order_fun a0 b);
intros Eq1; auto.
Qed.
(* Inserting returns a permutation *)
Theorem insert_permutation :
forall (L : list A) (a : A), permutation (a :: L) (insert a L).
Proof using.
intros L; elim L; simpl in |- *; auto.
intros b l H' a.
CaseEq (order_fun a b); intros H1; auto.
apply permutation_trans with (l2 := b :: a :: l); auto.
Qed.
Hint Resolve insert_ordered insert_permutation : core.
(* Sorting by insertion *)
Fixpoint isort (l : list A) : list A :=
match l with
| nil => nil
| b :: l1 => insert b (isort l1)
end.
(* Sorting gives an ordered list *)
Theorem isort_ordered : forall l : list A, ordered order (isort l).
Proof using order_fun_false order_fun_true.
intros l; elim l; simpl in |- *; auto.
Qed.
(* The result is a permutation of the original list *)
Theorem isort_permutation : forall l : list A, permutation l (isort l).
Proof using.
intros l; elim l; clear l; simpl in |- *; auto.
intros a l H'.
apply permutation_trans with (l2 := a :: isort l); auto.
Qed.
Hint Resolve isort_ordered isort_permutation : core.
End ISortExample.
Arguments insert [A].
Arguments isort [A].
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(***********************************************************************)
(* Proof of Huffman algorithm: ISort.v *)
(* *)
(* Definition of sorting by insertion and its proof of correctness *)
(* *)
(* Definitions: isort, insert *)
(* *)
(* Laurent.Thery@inria.fr (2003) *)
(***********************************************************************)
Require Import List.
From Huffman Require Import Permutation.
From Huffman Require Import Ordered.
From Huffman Require Import sTactic.
Section ISortExample.
Variable A : Type.
Variable order : A -> A -> Prop.
Variable order_fun : A -> A -> bool.
Hypothesis order_fun_true : forall a b : A, order_fun a b = true -> order a b.
Hypothesis order_fun_false : forall a b : A, order_fun a b = false -> order b a.
(* Insert an element *)
Fixpoint insert (a : A) (l : list A) {struct l} : list A :=
match l with
| nil => a :: nil
| b :: l1 =>
match order_fun a b with
| true => a :: l
| false => b :: insert a l1
end
end.
(* Inserting preserves ordering *)
Theorem insert_ordered :
forall l : list A,
ordered order l -> forall a : A, ordered order (insert a l).
Proof using order_fun_false order_fun_true.
intros l H'; elim H'; clear H' l; auto.
simpl in |- *; auto.
intros a b; simpl in |- *.
generalize (refl_equal (order_fun b a));
pattern (order_fun b a) at -1 in |- *; case (order_fun b a);
intros Eq0; auto.
intros a b l H'0 H'1 H'2 a0.
simpl in |- *.
generalize (refl_equal (order_fun a0 a));
pattern (order_fun a0 a) at -1 in |- *; case (order_fun a0 a);
intros Eq0; auto.
generalize (H'2 a0); simpl in |- *.
generalize (refl_equal (order_fun a0 b));
pattern (order_fun a0 b) at -1 in |- *; case (order_fun a0 b);
intros Eq1; auto.
Qed.
(* Inserting returns a permutation *)
Theorem insert_permutation :
forall (L : list A) (a : A), permutation (a :: L) (insert a L).
Proof using.
intros L; elim L; simpl in |- *; auto.
intros b l H' a.
CaseEq (order_fun a b); intros H1; auto.
apply permutation_trans with (l2 := b :: a :: l); auto.
Qed.
Hint Resolve insert_ordered insert_permutation : core.
(* Sorting by insertion *)
Fixpoint isort (l : list A) : list A :=
match l with
| nil => nil
| b :: l1 => insert b (isort l1)
end.
(* Sorting gives an ordered list *)
Theorem isort_ordered : forall l : list A, ordered order (isort l).
Proof using order_fun_false order_fun_true.
intros l; elim l; simpl in |- *; auto.
Qed.
(* The result is a permutation of the original list *)
Theorem isort_permutation : forall l : list A, permutation l (isort l).
Proof using.
intros l; elim l; clear l; simpl in |- *; auto.
intros a l H'.
apply permutation_trans with (l2 := a :: isort l); auto.
Qed.
Hint Resolve isort_ordered isort_permutation : core.
End ISortExample.
Arguments insert [A].
Arguments isort [A].