Library hydras.rpo.closure

by Evelyne Contejean, LRI


Set Implicit Arguments.

From Coq Require Import Relations.

Inductive trans_clos (A : Set) (R : relation A) : relation A:=
  | t_step : x y, R x y trans_clos R x y
  | t_trans : x y z, R x y trans_clos R y z trans_clos R x z.

Lemma trans_clos_is_trans :
   (A :Set) (R : relation A) a b c,
  trans_clos R a b trans_clos R b c trans_clos R a c.

Lemma acc_trans :
  (A : Set) (R : relation A) a, Acc R a Acc (trans_clos R) a.

Lemma wf_trans :
   (A : Set) (R : relation A) , well_founded R
                                      well_founded (trans_clos R).

Lemma inv_trans :
   (A : Set) (R : relation A) (P : A Prop),
  ( a b, P a R a b P b)
   a b, P a trans_clos R a b P b.