Library hydras.rpo.closure
by Evelyne Contejean, LRI
Set Implicit Arguments.
From Coq Require Import Relations.
Inductive trans_clos (A : Set) (R : relation A) : relation A:=
| t_step : ∀ x y, R x y → trans_clos R x y
| t_trans : ∀ x y z, R x y → trans_clos R y z → trans_clos R x z.
Lemma trans_clos_is_trans :
∀ (A :Set) (R : relation A) a b c,
trans_clos R a b → trans_clos R b c → trans_clos R a c.
Lemma acc_trans :
∀ (A : Set) (R : relation A) a, Acc R a → Acc (trans_clos R) a.
Lemma wf_trans :
∀ (A : Set) (R : relation A) , well_founded R →
well_founded (trans_clos R).
Lemma inv_trans :
∀ (A : Set) (R : relation A) (P : A → Prop),
(∀ a b, P a → R a b → P b) →
∀ a b, P a → trans_clos R a b → P b.