Library hydras.solutions_exercises.T1_ltNotWf
The order lt on T is not well-founded
From hydras Require Import T1.
From Coq Require Import Relations.
Section Proof_of_lt_not_wf.
Hypothesis lt_wf : well_founded lt.
Fixpoint s (i:nat) : T1 :=
match i with
0 ⇒ phi0 2
| S j ⇒ cons 1 0 (s j)
end.
Lemma s_decr : ∀ i, lt (s (S i)) (s i).
Section seq_intro.
Variable A: Type.
Variable seq : nat → A.
Variable R : A → A → Prop.
Hypothesis Rwf : well_founded R.
Let is_in_seq (x:A) := ∃ i : nat, x = seq i.
Lemma not_acc : ∀ a b:A, R a b → ¬ Acc R a → ¬ Acc R b.
Lemma acc_imp : ∀ a b:A, R a b → Acc R b → Acc R a.
Lemma not_decreasing_aux : ¬ (∀ n:nat, R (seq (S n)) (seq n)).
End seq_intro.
Theorem not_decreasing (A:Type)(R: relation A) (Hwf : well_founded R) :
¬ (∃ seq : nat → A, (∀ i:nat, R (seq (S i)) (seq i))).
Lemma contrad : False.
End Proof_of_lt_not_wf.
Lemma lt_not_wf : ¬ well_founded lt.