Library hydras.solutions_exercises.is_F_monotonous
From hydras Require Import Iterates F_alpha E0.
From Coq Require Import ArithRing Lia Max.
Import Exp2 Canon.
From Coq Require Import Mult.
Open Scope nat_scope.
Section S1.
Hypothesis H : ∀ (alpha beta:E0), alpha o≤ beta →
∀ i, 2 ≤ i →
F_ alpha i ≤ F_ beta i.
Remark R1 : 3 o≤ E0_omega.
Remark R2 : 2 ≤ 2.
Let instance_H := H (E0fin 3) E0_omega R1 _ R2.
Remark R3 : F_ E0_omega 2 = F_ 2 2.
Remark R4 : F_ 3 2 = F_ 2 (F_ 2 (F_ 2 2)).
Remark R6 : ∀ i, i < F_ 2 i.
Lemma Fake_thm : False.
End S1.
From Coq Require Import ArithRing Lia Max.
Import Exp2 Canon.
From Coq Require Import Mult.
Open Scope nat_scope.
Section S1.
Hypothesis H : ∀ (alpha beta:E0), alpha o≤ beta →
∀ i, 2 ≤ i →
F_ alpha i ≤ F_ beta i.
Remark R1 : 3 o≤ E0_omega.
Remark R2 : 2 ≤ 2.
Let instance_H := H (E0fin 3) E0_omega R1 _ R2.
Remark R3 : F_ E0_omega 2 = F_ 2 2.
Remark R4 : F_ 3 2 = F_ 2 (F_ 2 (F_ 2 2)).
Remark R6 : ∀ i, i < F_ 2 i.
Lemma Fake_thm : False.
End S1.