(* Authors: Christian Doczkal and Jan-Oliver Kaiser *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Preliminaries

This file contains a number of auxiliary lemmas that do not mention any of the representations of regular languages and may thus also be useful in other contexts

Generic Lemmas not in MathComp

Logic

Notation "P =p Q" := (forall x, P x <-> Q x) (at level 30).

Lemma dec_iff P Q : decidable P -> Q <-> P -> decidable Q.
Proof. firstorder. Qed.

Lemma eqb_iff (b1 b2 : bool) : (b1 <-> b2) <-> (b1 = b2).
Proof. split => [[A B]|->//]. exact/idP/idP. Qed.

(* equivalence of type inhabitation *)
CoInductive iffT T1 T2 := IffT of (T1 -> T2) & (T2 -> T1).
Notation "T1 <-T-> T2" := (iffT T1 T2) (at level 30).

Definition iffT_LR T1 T2 : iffT T1 T2 -> T1 -> T2. by case. Qed.
Definition iffT_RL T1 T2 : iffT T1 T2 -> T2 -> T1. by case. Qed.

Hint View for move/ iffT_LR|2 iffT_RL|2.
Hint View for apply/ iffT_LR|2 iffT_RL|2.

Arithmetic

Lemma size_induction {X : Type} (measure : X -> nat) (p : X ->Prop) :
  ( forall x, ( forall y, measure y < measure x -> p y) -> p x) -> forall x, p x.
Proof.
  move => A x. apply: (A). elim: (measure x) => // n IHn y Hy.
  apply: A => z Hz. apply: IHn. exact: leq_trans Hz Hy.
Qed.

Sequences - seq.v

Lemma nth_cons T (x0:T) x (s : seq T) n : nth x0 (x::s) n.+1 = nth x0 s n.
Proof. done. Qed.

Lemma take_take T (s : seq T) n m : n < m -> take n (take m s) = take n s.
Proof. elim: m n s => // n IHn [|m] [|a s] //= ?. by rewrite IHn. Qed.

Lemma take_addn (T : Type) (s : seq T) n m : take (n + m) s = take n s ++ take m (drop n s).
Proof.
  elim: n m s => [|n IH] [|m] [|a s] //; first by rewrite take0 addn0 cats0.
  by rewrite drop_cons addSn !take_cons /= IH.
Qed.

Lemma index_take (T : eqType) (a : T) n (s : seq T) :
  a \in take n s -> index a (take n s) = index a s.
Proof. move => H. by rewrite -{2}[s](cat_take_drop n) index_cat H. Qed.

Lemma flatten_rcons T ss (s:seq T) : flatten (rcons ss s) = flatten ss ++ s.
Proof. by rewrite -cats1 flatten_cat /= cats0. Qed.

Lemma rev_flatten T (ss : seq (seq T)) :
  rev (flatten ss) = flatten (rev (map rev ss)).
Proof.
elim: ss => //= s ss IHss.
by rewrite rev_cons flatten_rcons -IHss rev_cat.
Qed.

Hint Resolve mem_head : core.

Lemma all1s {T : eqType} {a : T} {s} {P : T -> Prop} :
  (forall b, b \in a :: s -> P b) <-> P a /\ (forall b, b \in s -> P b).
Proof.
  split => [A|[A B] b /predU1P [->//|]]; last exact: B.
  split => [|b B]; apply: A => //. by rewrite !inE B orbT.
Qed.

Lemma ex1s {T : eqType} {a : T} {s} {P : T -> Prop} :
  (exists2 x : T, x \in a :: s & P x) <-> P a \/ (exists2 x : T, x \in s & P x).
Proof.
  split => [[x] /predU1P [->|]|]; firstorder. exists x => //. by rewrite inE H orbT.
Qed.

Lemma orS (b1 b2 : bool) : b1 || b2 -> {b1} + {b2}.
Proof. by case: b1 => /= [_|H]; [left|right]. Qed.

Lemma all1sT {T : eqType} {a : T} {s} {P : T -> Type} :
  (forall b, b \in a :: s -> P b) <-T-> (P a * (forall b, b \in s -> P b)).
Proof.
  split => [A|[A B] b].
  - split; first by apply: A. move => b in_s. apply A. by rewrite inE in_s orbT.
  - rewrite inE. case/orS => [/eqP -> //|]. exact: B.
Qed.

Lemma bigmax_seq_sup (T : eqType) (s:seq T) (P : pred T) F k m :
  k \in s -> P k -> m <= F k -> m <= \max_(i <- s | P i) F i.
Proof. move => A B C. by rewrite (big_rem k) //= B leq_max C. Qed.

Lemma max_mem n0 (s : seq nat) : n0 \in s -> \max_(i <- s) i \in s.
Proof.
  case: s => // a s _. rewrite big_cons big_seq.
  elim/big_ind : _ => // [n m|n A].
  - rewrite -{5}[a]maxnn maxnACA => ? ?. rewrite {1}/maxn. by case: ifP.
  - rewrite /maxn. case: ifP => _ //. by rewrite inE A orbT.
Qed.

(* reasoning about singletons *)
Lemma seq1P (T : eqType) (x y : T) : reflect (x = y) (x \in [:: y]).
Proof. rewrite inE. exact: eqP. Qed.

Lemma sub1P (T : eqType) x (p : pred T) : reflect {subset [:: x] <= p} (x \in p).
Proof. apply: (iffP idP) => [A y|]; by [rewrite inE => /eqP->|apply]. Qed.

Finite Types - fintype.v

Lemma sub_forall (T: finType) (p q : pred T) :
  subpred p q -> [forall x : T, p x] -> [forall x : T, q x].
Proof. move => sub /forallP H. apply/forallP => x. exact: sub. Qed.

Lemma sub_exists (T : finType) (P1 P2 : pred T) :
  subpred P1 P2 -> [exists x, P1 x] -> [exists x, P2 x].
Proof. move => H. case/existsP => x /H ?. apply/existsP. by exists x. Qed.

Lemma card_leq_inj (T T' : finType) (f : T -> T') : injective f -> #|T| <= #|T'|.
Proof. move => inj_f. by rewrite -(card_imset predT inj_f) max_card. Qed.

Lemma bij_card {X Y : finType} (f : X->Y): bijective f -> #|X| = #|Y|.
Proof.
  case => g /can_inj Hf /can_inj Hg. apply/eqP.
  by rewrite eqn_leq (card_leq_inj Hf) (card_leq_inj Hg).
Qed.

Lemma cardT_eq (T : finType) (p : pred T) : #|{: { x | p x}}| = #|T| -> p =1 predT.
Proof. move/(inj_card_bij val_inj) => [g g1 g2 x]. rewrite -(g2 x). exact: valP. Qed.

Finite Ordinals

Lemma inord_max n : ord_max = inord n :> 'I_n.+1.
Proof. by rewrite -[ord_max]inord_val. Qed.

Lemma inord0 n : ord0 = inord 0 :> 'I_n.+1.
Proof. by rewrite -[ord0]inord_val. Qed.

Definition ord1 {n} := (@Ordinal (n.+2) 1 (erefl _)).

Lemma inord1 n : ord1 = inord 1 :> 'I_n.+2.
Proof. apply: ord_inj => /=. by rewrite inordK. Qed.

Hint Resolve ltn_ord : core.

Finite Sets - finset.v

Lemma card_set (T:finType) : #|{set T}| = 2^#|T|.
Proof. rewrite -!cardsT -powersetT. exact: card_powerset. Qed.

Miscellaneous

Lemma Sub_eq (T : Type) (P : pred T) (sT : subType P) (x y : T) (Px : P x) (Py : P y) :
  (@Sub _ _ sT) x Px = Sub y Py <-> x = y.
Proof.
  split => [|e].
  - by rewrite -{2}[x](SubK sT) -{2}[y](SubK sT) => ->.
  - move: Py. rewrite -e => Py. by rewrite (bool_irrelevance Py Px).
Qed.

Local Open Scope quotient_scope.
Lemma epiK {T:choiceType} (e : equiv_rel T) x : e (repr (\pi_{eq_quot e} x)) x.
Proof. by rewrite -eqmodE reprK. Qed.

Lemma set_enum (T : finType) : [set x in enum T] = [set: T].
Proof. apply/setP => x. by rewrite !inE mem_enum. Qed.

Lemma find_minn_bound (p : pred nat) m :
  {n | [/\ n < m, p n & forall i, i < n -> ~~ p i]} + {(forall i, i < m -> ~~ p i)}.
Proof.
  case: (boolP [exists n : 'I_m, p n]) => C ; [left|right].
  - have/find_ex_minn: exists n, (n < m) && p n.
      case/existsP : C => [[n Hn pn]] /=. exists n. by rewrite Hn.
    case => n /andP [lt_m pn] min_n. exists n. split => // i Hi.
    apply: contraTN (Hi) => pi. rewrite -leqNgt min_n // pi andbT.
    exact: ltn_trans lt_m.
  - move => i lt_m. move: C. by rewrite negb_exists => /forallP /(_ (Ordinal lt_m)).
Qed.

Relations

Section Functional.
  Variables (T T' : finType) (e : rel T) (e' : rel T') (f : T -> T').

  Definition terminal x := forall y, e x y = false.
  Definition functional := forall x y z, e x y -> e x z -> y = z.

  Lemma term_uniq x y z : functional ->
    terminal y -> terminal z -> connect e x y -> connect e x z -> y = z.
  Proof.
    move => fun_e Ty Tz /connectP [p] p1 p2 /connectP [q].
    elim: p q x p1 p2 => [|a p IH] [|b q] x /=; first congruence.
    - move => _ <-. by rewrite Ty.
    - case/andP => xa _ _ _ H. by rewrite -H Tz in xa.
    - case/andP => xa p1 p2 /andP [xb] q1 q2.
      move: (fun_e _ _ _ xa xb) => ?; subst b. exact: IH q2.
  Qed.

  Hypothesis f_inj : injective f.
  Hypothesis f_eq : forall x y, e x y = e' (f x) (f y).
  Hypothesis f_inv: forall x z, e' (f x) z -> exists y, z = f y.

  Lemma connect_transfer x y : connect e x y = connect e' (f x) (f y).
  Proof. apply/idP/idP.
    - case/connectP => s.
      elim: s x => //= [x _ -> |z s IH x]; first exact: connect0.
      case/andP => xz pth Hy. rewrite f_eq in xz.
      apply: connect_trans (connect1 xz) _. exact: IH.
    - case/connectP => s.
      elim: s x => //= [x _ /f_inj -> |z s IH x]; first exact: connect0.
      case/andP => xz pth Hy. case: (f_inv xz) => z' ?; subst.
      rewrite -f_eq in xz. apply: connect_trans (connect1 xz) _. exact: IH.
  Qed.
End Functional.

Lemma functional_sub (T : finType) (e1 e2 : rel T) :
  functional e2 -> subrel e1 e2 -> functional e1.
Proof. move => f_e2 sub x y z /sub E1 /sub E2. exact: f_e2 E1 E2. Qed.

Inverting surjective functions


Definition surjective aT {rT : eqType} (f : aT -> rT) := forall y, exists x, f x == y.

Lemma surjectiveE (rT aT : finType) (f : aT -> rT) : surjective f -> #|codom f| = #|rT|.
Proof.
  move => H. apply: eq_card => x. rewrite inE. apply/codomP.
  move: (H x) => [y /eqP]. eauto.
Qed.

Lemma surj_card_bij (T T' : finType) (f : T -> T') :
  surjective f -> #|T| = #|T'| -> bijective f.
Proof.
  move => S E. apply: inj_card_bij (E). apply/injectiveP. change (uniq (codom f)).
  apply/card_uniqP. rewrite size_map -cardT E. exact: surjectiveE.
Qed.

(* We define a general inverse of surjective functions from choiceType -> eqType.
   This function gives a canonical representative, thus the name "cr". *)

Definition cr {X : choiceType} {Y : eqType} {f : X -> Y} (Sf : surjective f) y : X :=
  xchoose (Sf y).

Lemma crK {X : choiceType} {Y : eqType} {f : X->Y} {Sf : surjective f} x: f (cr Sf x) = x.
Proof. by rewrite (eqP (xchooseP (Sf x))). Qed.

Lemma dec_eq (P : Prop) (decP : decidable P) : decP <-> P.
Proof. by case: decP. Qed.