ATBR.MxFunctors
(**************************************************************************)
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
(* Extension of functors on base structures to functors on matrices *)
Require Import Common.
Require Import Classes.
Require Import Monoid.
Require Import SemiLattice.
Require Import SemiRing.
Require Import KleeneAlgebra.
Require Import MxGraph.
Require Import MxSemiLattice.
Require Import MxSemiRing.
Require Import MxKleeneAlgebra.
Require Import Functors.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Transparent equal.
Section Defs.
Context {G1: Graph} {G2: Graph}
{SLo1: SemiLattice_Ops G1} {SLo2: SemiLattice_Ops G2}
{Mo1: Monoid_Ops G1} {Mo2: Monoid_Ops G2}
{So1: Star_Op G1} {So2: Star_Op G2}.
Variable F: functor G1 G2.
Variable A: @T G1.
Notation MG1 := (@mx_Graph G1 A).
Notation MG2 := (@mx_Graph G2 (fT F A)).
Definition mxF: functor MG1 MG2 :=
@Build_functor MG1 MG2
(fun n => n)
(fun n m M => box n m (fun i j => F _ _ (!M i j))).
Global Instance mxgraph_functor {HF: graph_functor F}: graph_functor mxF.
Proof.
constructor. repeat intro. simpl. apply functor_compat. auto.
Qed.
Global Instance mxsemilattice_functor {HF: semilattice_functor F}: semilattice_functor mxF.
Proof.
constructor.
apply mxgraph_functor.
repeat intro; simpl. apply functor_plus.
repeat intro; simpl. apply functor_zero.
Qed.
Global Instance mxsemiring_functor {SL1: SemiLattice G1} {SL2: SemiLattice G2}
{HF: semiring_functor F}: semiring_functor mxF.
Proof.
constructor. constructor.
apply mxgraph_functor.
repeat intro; simpl.
rewrite functor_sum. apply sum_compat. intros. apply functor_dot.
repeat intro; simpl. intros. BoolView.nat_analyse.
apply functor_one. apply functor_zero.
apply mxsemilattice_functor.
Qed.
Lemma functor_mx_blocks:
forall x y n m a b c d,
mxF _ _ (@mx_blocks _ A x y n m a b c d) ==
mx_blocks (mxF _ _ a) (mxF _ _ b) (mxF _ _ c) (mxF _ _ d).
Proof.
repeat intro; simpl. destruct_blocks; reflexivity.
Qed.
Lemma functor_mx_sub:
forall n' m' x y n m M,
mxF _ _ (@mx_sub _ A n' m' x y n m M) =
mx_sub x y n m (mxF _ _ M).
Proof. reflexivity. Qed.
Lemma functor_mx_of_scal:
forall a,
mxF _ _ (mx_of_scal a) =
mx_of_scal (F _ _ a).
Proof. reflexivity. Qed.
Lemma functor_mx_to_scal:
forall M,
F _ _ (mx_to_scal M) =
mx_to_scal (mxF _ _ M).
Proof. reflexivity. Qed.
Global Instance mxkleene_functor {KA1: KleeneAlgebra G1} {KA2: KleeneAlgebra G2}
{HF: kleene_functor F}: kleene_functor mxF.
Proof.
constructor.
apply mxsemiring_functor.
intro n. induction n; intro a.
intros i j Hi; inversion Hi.
unfold star, mx_Star_Op in *.
unfold star_rec at 1. fold (star_rec (A:=A) (n:=n)). unfold star_build.
change (S n) with (1+n)%nat.
rewrite functor_mx_blocks.
rewrite functor_plus.
rewrite !functor_dot.
rewrite !functor_mx_of_scal.
rewrite functor_star.
rewrite functor_mx_to_scal.
rewrite functor_plus.
rewrite functor_dot.
do 4 rewrite functor_dot at 1.
do 9 rewrite IHn at 1. reflexivity.
Qed.
End Defs.
(* This is part of ATBR, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2011: Thomas Braibant, Damien Pous. *)
(**************************************************************************)
(* Extension of functors on base structures to functors on matrices *)
Require Import Common.
Require Import Classes.
Require Import Monoid.
Require Import SemiLattice.
Require Import SemiRing.
Require Import KleeneAlgebra.
Require Import MxGraph.
Require Import MxSemiLattice.
Require Import MxSemiRing.
Require Import MxKleeneAlgebra.
Require Import Functors.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Transparent equal.
Section Defs.
Context {G1: Graph} {G2: Graph}
{SLo1: SemiLattice_Ops G1} {SLo2: SemiLattice_Ops G2}
{Mo1: Monoid_Ops G1} {Mo2: Monoid_Ops G2}
{So1: Star_Op G1} {So2: Star_Op G2}.
Variable F: functor G1 G2.
Variable A: @T G1.
Notation MG1 := (@mx_Graph G1 A).
Notation MG2 := (@mx_Graph G2 (fT F A)).
Definition mxF: functor MG1 MG2 :=
@Build_functor MG1 MG2
(fun n => n)
(fun n m M => box n m (fun i j => F _ _ (!M i j))).
Global Instance mxgraph_functor {HF: graph_functor F}: graph_functor mxF.
Proof.
constructor. repeat intro. simpl. apply functor_compat. auto.
Qed.
Global Instance mxsemilattice_functor {HF: semilattice_functor F}: semilattice_functor mxF.
Proof.
constructor.
apply mxgraph_functor.
repeat intro; simpl. apply functor_plus.
repeat intro; simpl. apply functor_zero.
Qed.
Global Instance mxsemiring_functor {SL1: SemiLattice G1} {SL2: SemiLattice G2}
{HF: semiring_functor F}: semiring_functor mxF.
Proof.
constructor. constructor.
apply mxgraph_functor.
repeat intro; simpl.
rewrite functor_sum. apply sum_compat. intros. apply functor_dot.
repeat intro; simpl. intros. BoolView.nat_analyse.
apply functor_one. apply functor_zero.
apply mxsemilattice_functor.
Qed.
Lemma functor_mx_blocks:
forall x y n m a b c d,
mxF _ _ (@mx_blocks _ A x y n m a b c d) ==
mx_blocks (mxF _ _ a) (mxF _ _ b) (mxF _ _ c) (mxF _ _ d).
Proof.
repeat intro; simpl. destruct_blocks; reflexivity.
Qed.
Lemma functor_mx_sub:
forall n' m' x y n m M,
mxF _ _ (@mx_sub _ A n' m' x y n m M) =
mx_sub x y n m (mxF _ _ M).
Proof. reflexivity. Qed.
Lemma functor_mx_of_scal:
forall a,
mxF _ _ (mx_of_scal a) =
mx_of_scal (F _ _ a).
Proof. reflexivity. Qed.
Lemma functor_mx_to_scal:
forall M,
F _ _ (mx_to_scal M) =
mx_to_scal (mxF _ _ M).
Proof. reflexivity. Qed.
Global Instance mxkleene_functor {KA1: KleeneAlgebra G1} {KA2: KleeneAlgebra G2}
{HF: kleene_functor F}: kleene_functor mxF.
Proof.
constructor.
apply mxsemiring_functor.
intro n. induction n; intro a.
intros i j Hi; inversion Hi.
unfold star, mx_Star_Op in *.
unfold star_rec at 1. fold (star_rec (A:=A) (n:=n)). unfold star_build.
change (S n) with (1+n)%nat.
rewrite functor_mx_blocks.
rewrite functor_plus.
rewrite !functor_dot.
rewrite !functor_mx_of_scal.
rewrite functor_star.
rewrite functor_mx_to_scal.
rewrite functor_plus.
rewrite functor_dot.
do 4 rewrite functor_dot at 1.
do 9 rewrite IHn at 1. reflexivity.
Qed.
End Defs.