ExtLib.Data.List
From Coq Require Import List EquivDec.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Structures.Monoid.
Require Import ExtLib.Structures.Reducible.
Require ExtLib.Data.Nat.
Require Import ExtLib.Tactics.Consider.
Require Import ExtLib.Tactics.Injection.
Set Implicit Arguments.
Set Strict Implicit.
Set Universe Polymorphism.
Section EqDec.
Universe u.
Variable T : Type@{u}.
Variable EqDec_T : EquivDec.EqDec _ (@eq T).
Global Instance EqDec_list@{} : EquivDec.EqDec _ (@eq (list T)).
Proof.
red. unfold Equivalence.equiv, RelationClasses.complement.
intros.
change (x = y -> False) with (not (x = y)).
decide equality. eapply EqDec_T.
Qed.
End EqDec.
(* Specialized induction rules *)
Lemma list_ind_singleton@{u}
: forall {T : Type@{u}} (P : list T -> Prop)
(Hnil : P nil)
(Hsingle : forall t, P (t :: nil))
(Hcons : forall t u us, P (u :: us) -> P (t :: u :: us)),
forall ls, P ls.
Proof.
induction ls; eauto.
destruct ls. eauto. eauto.
Qed.
Lemma list_rev_ind@{u}
: forall (T : Type@{u}) (P : list T -> Prop),
P nil ->
(forall l ls, P ls -> P (ls ++ l :: nil)) ->
forall ls, P ls.
Proof.
clear. intros. rewrite <- rev_involutive.
induction (rev ls).
apply H.
simpl. auto.
Qed.
Section AllB.
Universe u.
Variable T : Type@{u}.
Variable p : T -> bool.
Fixpoint allb@{} (ls : list T) : bool :=
match ls with
| nil => true
| l :: ls =>
if p l then allb ls else false
end.
Fixpoint anyb@{} (ls : list T) : bool :=
match ls with
| nil => false
| l :: ls =>
if p l then true else anyb ls
end.
End AllB.
Lemma Forall_map@{uT uU}
: forall (T : Type@{uT}) (U : Type@{uU}) (f : T -> U) P ls,
Forall P (List.map f ls) <-> Forall (fun x => P (f x)) ls.
Proof.
induction ls; simpl.
{ split; intros; constructor. }
{ split; inversion 1; intros; subst; constructor; auto.
apply IHls. auto. apply IHls. auto. }
Qed.
Lemma Forall_cons_iff@{u} : forall (T : Type@{u}) (P : T -> Prop) a b,
Forall P (a :: b) <-> (P a /\ Forall P b).
Proof. clear. split.
inversion 1; auto.
destruct 1; constructor; auto.
Qed.
Lemma Forall_nil_iff@{u} : forall (T : Type@{u}) (P : T -> Prop),
Forall P nil <-> True.
Proof.
clear. split; auto.
Qed.
Global Instance Foldable_list@{u} {T : Type@{u}} : Foldable (list T) T :=
fun _ f x ls => fold_right f x ls.
Require Import ExtLib.Structures.Traversable.
Require Import ExtLib.Structures.Functor.
Require Import ExtLib.Structures.Monads.
Require Import ExtLib.Structures.Applicative.
Section traversable.
Universe u v vF.
Context {F : Type@{v} -> Type@{vF}}.
Context {Applicative_F : Applicative F}.
Context {A : Type@{u}} {B : Type@{v}}.
Variable f : A -> F B.
Fixpoint mapT_list@{} (ls : list A) : F (list B) :=
match ls with
| nil => pure nil
| l :: ls => ap (ap (pure (@cons B)) (f l)) (mapT_list ls)
end.
End traversable.
Global Instance Traversable_list@{} : Traversable list :=
{ mapT := @mapT_list }.
Monomorphic Universe listU.
Global Instance Monad_list@{} : Monad@{listU listU} list :=
{ ret := fun _ x => x :: nil
; bind := fun _ _ x f =>
flat_map f x
}.
Global Instance MonadZero_list : MonadZero list :=
{ mzero := @nil }.
Global Instance MonadPlus_list : MonadPlus list :=
{ mplus _A _B a b := List.map inl a ++ List.map inr b
}.
Section list.
Inductive R_list_len@{u} {T : Type@{u}} : list T -> list T -> Prop :=
| R_l_len : forall n m, length n < length m -> R_list_len n m.
Theorem wf_R_list_len@{u} (T : Type@{u}) : well_founded (@R_list_len T).
Proof.
constructor. intros.
refine (@Fix _ _ Nat.wf_R_lt (fun n : nat => forall ls : list T, n = length ls -> Acc R_list_len ls)
(fun x rec ls pfls => Acc_intro _ _)
_ _ refl_equal).
refine (
match ls as ls return x = length ls -> forall z : list T, R_list_len z ls -> Acc R_list_len z with
| nil => fun (pfls : x = 0) z pf => _
| cons l ls => fun pfls z pf =>
rec _ (match pf in R_list_len xs ys return x = length ys -> Nat.R_nat_lt (length xs) x with
| R_l_len n m pf' => fun pf_eq => match eq_sym pf_eq in _ = x return Nat.R_nat_lt (length n) x with
| refl_equal => Nat.R_lt pf'
end
end pfls) _ eq_refl
end pfls).
clear - pf; abstract (inversion pf; subst; simpl in *; inversion H).
Defined.
End list.
Definition Monoid_list_app@{u v} {T : Type@{u}} : Monoid@{v} (list T) :=
{| monoid_plus := @List.app _
; monoid_unit := @nil _
|}.
Section ListEq.
Universe u.
Variable T : Type@{u}.
Variable EDT : RelDec (@eq T).
Fixpoint list_eqb@{} (ls rs : list T) : bool :=
match ls , rs with
| nil , nil => true
| cons l ls , cons r rs =>
if l ?[ eq ] r then list_eqb ls rs else false
| _ , _ => false
end.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Structures.Monoid.
Require Import ExtLib.Structures.Reducible.
Require ExtLib.Data.Nat.
Require Import ExtLib.Tactics.Consider.
Require Import ExtLib.Tactics.Injection.
Set Implicit Arguments.
Set Strict Implicit.
Set Universe Polymorphism.
Section EqDec.
Universe u.
Variable T : Type@{u}.
Variable EqDec_T : EquivDec.EqDec _ (@eq T).
Global Instance EqDec_list@{} : EquivDec.EqDec _ (@eq (list T)).
Proof.
red. unfold Equivalence.equiv, RelationClasses.complement.
intros.
change (x = y -> False) with (not (x = y)).
decide equality. eapply EqDec_T.
Qed.
End EqDec.
(* Specialized induction rules *)
Lemma list_ind_singleton@{u}
: forall {T : Type@{u}} (P : list T -> Prop)
(Hnil : P nil)
(Hsingle : forall t, P (t :: nil))
(Hcons : forall t u us, P (u :: us) -> P (t :: u :: us)),
forall ls, P ls.
Proof.
induction ls; eauto.
destruct ls. eauto. eauto.
Qed.
Lemma list_rev_ind@{u}
: forall (T : Type@{u}) (P : list T -> Prop),
P nil ->
(forall l ls, P ls -> P (ls ++ l :: nil)) ->
forall ls, P ls.
Proof.
clear. intros. rewrite <- rev_involutive.
induction (rev ls).
apply H.
simpl. auto.
Qed.
Section AllB.
Universe u.
Variable T : Type@{u}.
Variable p : T -> bool.
Fixpoint allb@{} (ls : list T) : bool :=
match ls with
| nil => true
| l :: ls =>
if p l then allb ls else false
end.
Fixpoint anyb@{} (ls : list T) : bool :=
match ls with
| nil => false
| l :: ls =>
if p l then true else anyb ls
end.
End AllB.
Lemma Forall_map@{uT uU}
: forall (T : Type@{uT}) (U : Type@{uU}) (f : T -> U) P ls,
Forall P (List.map f ls) <-> Forall (fun x => P (f x)) ls.
Proof.
induction ls; simpl.
{ split; intros; constructor. }
{ split; inversion 1; intros; subst; constructor; auto.
apply IHls. auto. apply IHls. auto. }
Qed.
Lemma Forall_cons_iff@{u} : forall (T : Type@{u}) (P : T -> Prop) a b,
Forall P (a :: b) <-> (P a /\ Forall P b).
Proof. clear. split.
inversion 1; auto.
destruct 1; constructor; auto.
Qed.
Lemma Forall_nil_iff@{u} : forall (T : Type@{u}) (P : T -> Prop),
Forall P nil <-> True.
Proof.
clear. split; auto.
Qed.
Global Instance Foldable_list@{u} {T : Type@{u}} : Foldable (list T) T :=
fun _ f x ls => fold_right f x ls.
Require Import ExtLib.Structures.Traversable.
Require Import ExtLib.Structures.Functor.
Require Import ExtLib.Structures.Monads.
Require Import ExtLib.Structures.Applicative.
Section traversable.
Universe u v vF.
Context {F : Type@{v} -> Type@{vF}}.
Context {Applicative_F : Applicative F}.
Context {A : Type@{u}} {B : Type@{v}}.
Variable f : A -> F B.
Fixpoint mapT_list@{} (ls : list A) : F (list B) :=
match ls with
| nil => pure nil
| l :: ls => ap (ap (pure (@cons B)) (f l)) (mapT_list ls)
end.
End traversable.
Global Instance Traversable_list@{} : Traversable list :=
{ mapT := @mapT_list }.
Monomorphic Universe listU.
Global Instance Monad_list@{} : Monad@{listU listU} list :=
{ ret := fun _ x => x :: nil
; bind := fun _ _ x f =>
flat_map f x
}.
Global Instance MonadZero_list : MonadZero list :=
{ mzero := @nil }.
Global Instance MonadPlus_list : MonadPlus list :=
{ mplus _A _B a b := List.map inl a ++ List.map inr b
}.
Section list.
Inductive R_list_len@{u} {T : Type@{u}} : list T -> list T -> Prop :=
| R_l_len : forall n m, length n < length m -> R_list_len n m.
Theorem wf_R_list_len@{u} (T : Type@{u}) : well_founded (@R_list_len T).
Proof.
constructor. intros.
refine (@Fix _ _ Nat.wf_R_lt (fun n : nat => forall ls : list T, n = length ls -> Acc R_list_len ls)
(fun x rec ls pfls => Acc_intro _ _)
_ _ refl_equal).
refine (
match ls as ls return x = length ls -> forall z : list T, R_list_len z ls -> Acc R_list_len z with
| nil => fun (pfls : x = 0) z pf => _
| cons l ls => fun pfls z pf =>
rec _ (match pf in R_list_len xs ys return x = length ys -> Nat.R_nat_lt (length xs) x with
| R_l_len n m pf' => fun pf_eq => match eq_sym pf_eq in _ = x return Nat.R_nat_lt (length n) x with
| refl_equal => Nat.R_lt pf'
end
end pfls) _ eq_refl
end pfls).
clear - pf; abstract (inversion pf; subst; simpl in *; inversion H).
Defined.
End list.
Definition Monoid_list_app@{u v} {T : Type@{u}} : Monoid@{v} (list T) :=
{| monoid_plus := @List.app _
; monoid_unit := @nil _
|}.
Section ListEq.
Universe u.
Variable T : Type@{u}.
Variable EDT : RelDec (@eq T).
Fixpoint list_eqb@{} (ls rs : list T) : bool :=
match ls , rs with
| nil , nil => true
| cons l ls , cons r rs =>
if l ?[ eq ] r then list_eqb ls rs else false
| _ , _ => false
end.
Specialization for equality
Global Instance RelDec_eq_list@{} : RelDec (@eq (list T)) :=
{ rel_dec := list_eqb }.
Variable EDCT : RelDec_Correct EDT.
Global Instance RelDec_Correct_eq_list@{v} : RelDec_Correct RelDec_eq_list.
Proof.
constructor; induction x; destruct y; split; simpl in *; intros;
try reflexivity + discriminate.
- destruct (_ : Reflect (rel_dec a t) _ _); try discriminate.
replace y with x by (apply IHx; auto); subst; auto.
- inversion H; subst. rewrite (rel_dec_eq_true _) by auto. apply IHx; auto.
Qed.
End ListEq.
Global Instance Injective_cons@{u} (T : Type@{u}) (a : T) b c d : Injective (a :: b = c :: d).
refine {| result := a = c /\ b = d |}.
inversion 1; auto.
Defined.
Global Instance Injective_cons_nil@{u} (T : Type@{u}) (a : T) b : Injective (a :: b = nil).
refine {| result := False |}.
inversion 1; auto.
Defined.
Global Instance Injective_nil_cons@{u} (T : Type@{u}) (a : T) b : Injective (nil = a :: b).
refine {| result := False |}.
inversion 1; auto.
Defined.
Global Instance Injective_nil_nil@{u} (T : Type@{u}) : Injective (nil = @nil T).
refine {| result := True |}.
auto.
Defined.
Global Instance Injective_app_cons@{u} {T : Type@{u}} (a : list T) b c d
: Injective (a ++ b :: nil = (c ++ d :: nil)).
Proof.
refine {| result := a = c /\ b = d |}.
eapply app_inj_tail.
Defined.
Global Instance Injective_app_same_L@{u} {T : Type@{u}} (a : list T) b c
: Injective (b ++ a = b ++ c).
Proof.
refine {| result := a = c |}.
apply app_inv_head.
Defined.
Global Instance Injective_app_same_R@{u} {T : Type@{u}} (a : list T) b c
: Injective (a ++ b = c ++ b).
Proof.
refine {| result := a = c |}.
apply app_inv_tail.
Defined.
(*
Lemma eq_list_eq@{u v}
: forall (T : Type@{u}) (a b : T) (pf : a = b) (F : T -> Type@{v}) val,
match pf in _ = x return list (F x) with
| eq_refl => val
end = map (fun val => match pf in _ = x return F x with
| eq_refl => val
end) val.
Proof.
destruct pf. intros. rewrite map_id. reflexivity.
Qed.
Hint Rewrite eq_list_eq : eq_rw.
*)
Export Coq.Lists.List.
{ rel_dec := list_eqb }.
Variable EDCT : RelDec_Correct EDT.
Global Instance RelDec_Correct_eq_list@{v} : RelDec_Correct RelDec_eq_list.
Proof.
constructor; induction x; destruct y; split; simpl in *; intros;
try reflexivity + discriminate.
- destruct (_ : Reflect (rel_dec a t) _ _); try discriminate.
replace y with x by (apply IHx; auto); subst; auto.
- inversion H; subst. rewrite (rel_dec_eq_true _) by auto. apply IHx; auto.
Qed.
End ListEq.
Global Instance Injective_cons@{u} (T : Type@{u}) (a : T) b c d : Injective (a :: b = c :: d).
refine {| result := a = c /\ b = d |}.
inversion 1; auto.
Defined.
Global Instance Injective_cons_nil@{u} (T : Type@{u}) (a : T) b : Injective (a :: b = nil).
refine {| result := False |}.
inversion 1; auto.
Defined.
Global Instance Injective_nil_cons@{u} (T : Type@{u}) (a : T) b : Injective (nil = a :: b).
refine {| result := False |}.
inversion 1; auto.
Defined.
Global Instance Injective_nil_nil@{u} (T : Type@{u}) : Injective (nil = @nil T).
refine {| result := True |}.
auto.
Defined.
Global Instance Injective_app_cons@{u} {T : Type@{u}} (a : list T) b c d
: Injective (a ++ b :: nil = (c ++ d :: nil)).
Proof.
refine {| result := a = c /\ b = d |}.
eapply app_inj_tail.
Defined.
Global Instance Injective_app_same_L@{u} {T : Type@{u}} (a : list T) b c
: Injective (b ++ a = b ++ c).
Proof.
refine {| result := a = c |}.
apply app_inv_head.
Defined.
Global Instance Injective_app_same_R@{u} {T : Type@{u}} (a : list T) b c
: Injective (a ++ b = c ++ b).
Proof.
refine {| result := a = c |}.
apply app_inv_tail.
Defined.
(*
Lemma eq_list_eq@{u v}
: forall (T : Type@{u}) (a b : T) (pf : a = b) (F : T -> Type@{v}) val,
match pf in _ = x return list (F x) with
| eq_refl => val
end = map (fun val => match pf in _ = x return F x with
| eq_refl => val
end) val.
Proof.
destruct pf. intros. rewrite map_id. reflexivity.
Qed.
Hint Rewrite eq_list_eq : eq_rw.
*)
Export Coq.Lists.List.