Require Import RelationClasses.
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries digraph sgraph treewidth.
Require Import set_tac.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope quotient_scope.
Set Bullet Behavior "Strict Subproofs".
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries digraph sgraph treewidth.
Require Import set_tac.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope quotient_scope.
Set Bullet Behavior "Strict Subproofs".
Definition minor_map (G H : sgraph) (phi : G -> option H) :=
[/\ (forall y : H, exists x : G, phi x = Some y),
(forall y : H, connected (phi @^-1 Some y)) &
(forall x y : H, x -- y -> exists x0 y0 : G,
[/\ x0 \in phi @^-1 Some x, y0 \in phi @^-1 Some y & x0 -- y0])].
Definition minor_rmap (G H : sgraph) (phi : H -> {set G}) :=
[/\ (forall x : H, phi x != set0),
(forall x : H, connected (phi x)),
(forall x y : H, x != y -> [disjoint phi x & phi y]) &
(forall x y : H, x -- y -> neighbor (phi x) (phi y))].
introduction lemma for minor maps, that uses an injection m : H -> nat
to order the vertices and reduce the number of cases when constructing minor
maps from constant graphs (e.g., 'K_5 or 'K_3,3).
Lemma ordered_rmap (G H : sgraph) (phi : H -> {set G}) (m : H -> nat) :
injective m ->
[/\ forall x : H, phi x != set0,
forall x : H, sgraph.connected (phi x),
forall x y : H, m x < m y -> x != y -> [disjoint phi x & phi y]
& forall x y : H, m x < m y -> x -- y -> neighbor (phi x) (phi y)]
-> minor_rmap phi.
Proof.
move => inj_m [P1 P2 P3 P4]; split => //.
- move => i j iNj.
wlog iltj: i j iNj / m i < m j; last exact: P3.
move => W. case: (ltngtP (m i) (m j)) => [||E].
+ exact: W.
+ by rewrite disjoint_sym; apply: W; rewrite eq_sym.
+ apply: contra_neqT iNj => _. exact: inj_m E.
- move => i j iNj.
wlog iltj: i j iNj / m i < m j; last exact: P4.
move => W. case: (ltngtP (m i) (m j)) => [||E].
+ exact: W.
+ by rewrite neighborC; apply: W; rewrite sgP.
+ apply: contraTT iNj => _. by rewrite (inj_m _ _ E) sgP.
Qed.
Arguments ordered_rmap [G H phi] m.
Lemma minor_map_rmap (G H : sgraph) (phi : H -> {set G}) :
minor_rmap phi -> minor_map (fun x : G => [pick x0 : H | x \in phi x0]).
Proof.
set phi' := (fun x => _).
case => P1 P2 P3 P4.
have phiP x x0 : x0 \in phi x = (phi' x0 == Some x).
{ rewrite /phi'. case: pickP => [x' Hx'|]; last by move->.
rewrite Some_eqE. apply/idP/eqP => [|<-//].
apply: contraTeq => /P3 D. by rewrite (disjointFr D Hx'). }
split.
- move => y. case/set0Pn : (P1 y) => y0. rewrite phiP => /eqP <-. by exists y0.
- move => y x0 y0. rewrite !inE -!phiP => H1 H2. move: (P2 y _ _ H1 H2).
apply: connect_mono => u v. by rewrite /= -!mem_preim !phiP.
- move => x y /P4/neighborP [x0] [y0] [*]. exists x0;exists y0. by rewrite -!mem_preim -!phiP.
Qed.
Lemma minor_rmap_map (G H : sgraph) (phi : G -> option H) :
minor_map phi -> minor_rmap (fun x => [set y | phi y == Some x]).
Proof.
set phi' := fun _ => _.
case => P1 P2 P3.
split.
- move => x. apply/set0Pn. case: (P1 x) => x0 H0. exists x0. by rewrite !inE H0.
- move => x u v Hu Hv. move: (P2 x _ _ Hu Hv).
apply: connect_mono => a b. by rewrite /= !inE.
- move => x y. apply: contraNT => /pred0Pn [x0 /= /andP[]].
by rewrite -Some_eqE !inE => /eqP<-/eqP<-.
- move => x y /P3 [x0] [y0] [*]. apply/neighborP. exists x0;exists y0. by rewrite !inE !mem_preim.
Qed.
Lemma rmap_add_edge_sym (G H : sgraph) (s1 s2 : G) (phi : H -> {set G}) :
@minor_rmap (add_edge s1 s2) H phi -> @minor_rmap (add_edge s2 s1) H phi.
Proof.
case => [P1 P2 P3 P4]; split => //.
- move => x. exact/add_edge_connected_sym.
- move => x y /P4/neighborP => [[x'] [y'] [A B C]].
apply/neighborP; exists x'; exists y'. by rewrite add_edgeC.
Qed.
Lemma rmap_disjE (G H : sgraph) (phi : H -> {set G}) x i j :
minor_rmap phi -> x \in phi i -> x \in phi j -> i=j.
Proof.
move => [_ _ map _] xi. apply contraTeq => iNj.
by erewrite (disjointFr (map _ _ iNj)).
Qed.
H is a minor of G -- The order allows us to write minor G for the
collection of Gs minors
Definition minor (G H : sgraph) : Prop := exists phi : G -> option H, minor_map phi.
Fact minor_of_map (G H : sgraph) (phi : G -> option H):
minor_map phi -> minor G H.
Proof. case => *. by exists phi. Qed.
Fact minor_of_rmap (G H : sgraph) (phi : H -> {set G}):
minor_rmap phi -> minor G H.
Proof. move/minor_map_rmap. exact: minor_of_map. Qed.
Lemma minorRE G H : minor G H -> exists phi : H -> {set G}, minor_rmap phi.
Proof. case => phi /minor_rmap_map D. eexists. exact: D. Qed.
Lemma minor_rmap_comp (G H K : sgraph) (f : H -> {set G}) (g : K -> {set H}) :
minor_rmap f -> minor_rmap g -> minor_rmap (fun x => \bigcup_(y in g x) f y).
Proof.
move => [f1 f2 f3 f4] [g1 g2 g3 g4]. split => [x|x|x1 x2|x1 x2].
- case/set0Pn: (g1 x) => y Gy; case/set0Pn: (f1 y) => z Fz.
by apply/set0Pn; exists z; apply/bigcupP; exists y.
- move => z1 z2 /bigcupP [y1 y1_g z1_f] /bigcupP [y2 y2_g z2_f].
have/connectP [p] := (g2 _ _ _ y1_g y2_g).
elim: p z1 y1 y1_g z1_f => /= [|y1' p IHp] z1 y1 y1_g z1_f.
+ move => _ ?; subst.
apply: connect_restrict_mono; [exact: bigcup_sup y1_g|exact: f2].
+ rewrite -andbA => /and3P [/andP [H1 H2] H3 H4 H5].
case/neighborP: (f4 _ _ H3) => a [b] [a_fy1 b_fy1' ab].
apply: connect_trans (IHp _ _ H2 b_fy1' H4 H5).
apply: (@connect_trans _ _ a).
* apply: connect_restrict_mono. apply: bigcup_sup y1_g. exact: f2.
* apply: connect1 => /=.
by rewrite ab andbT (mem_bigcup y1) ?(mem_bigcup y1').
- move/g3 => Dx. apply/disjointP => z.
case/bigcupP => y1 y1_g z_fy1; case/bigcupP => y2 y2_g z_fy2.
suff: y1 != y2 by move/f3/disjointP/(_ z); apply.
apply: contraTneq y2_g => <-. by rewrite (disjointFr Dx).
- move/g4/neighborP => [y1] [y2] [Y1 Y2 /f4 /neighborP [z1] [z2] [? ? e]].
by apply/neighborP; exists z1; exists z2; rewrite (mem_bigcup y1) ?(mem_bigcup y2).
Qed.
Lemma minor_map_comp (G H K : sgraph) (f : G -> option H) (g : H -> option K) :
minor_map f -> minor_map g -> minor_map (obind g \o f).
Proof.
move=> [f1 f2 f3] [g1 g2 g3]. rewrite /comp; split.
- move => y. case: (g1 y) => y'. case: (f1 y') => x E1 ?.
exists x. by rewrite E1.
- move => z x y. rewrite !inE.
case Ef : (f x) => [fx|] //= gfx. case Eg : (f y) => [fy|] //= gfy.
move: (g2 z fx fy). rewrite !inE. case/(_ _ _)/Wrap => // /connectP => [[p]].
elim: p x fx Ef gfx => /= [|a p IH] x fx Ef gfx.
+ move => _ ?. subst fy.
move: (f2 fx x y). rewrite !inE Ef Eg. case/(_ _ _)/Wrap => //.
apply: connect_mono => a b /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite (eqP gfx) !eqxx.
+ rewrite !inE -!andbA => /and4P [H1 H2 H3 H4] H5.
case: (f1 a) => x' Hx'. apply: (connect_trans (y := x')); last exact: IH H5.
move/f3 : (H3) => [x0] [y0] [X1 X2 X3].
apply: (connect_trans (y := x0)); last apply: (connect_trans (y := y0)).
* move: (f2 fx x x0). rewrite !inE ?Ef ?eqxx in X1 *. case/(_ _ _)/Wrap => //.
apply: connect_mono => u v /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite H1.
* apply: connect1. rewrite /= !inE ?X3 ?andbT in X1 X2 *.
by rewrite (eqP X1) (eqP X2) /= (eqP gfx) eqxx.
* move: (f2 a y0 x' X2). case/(_ _)/Wrap. by rewrite !inE Hx'.
apply: connect_mono => u v /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite H2.
- move => x y /g3 [x'] [y'] [Hx' Hy'] /f3 [x0] [y0] [Hx0 Hy0 ?].
exists x0. exists y0. rewrite !inE in Hx' Hy' Hx0 Hy0 *.
split => //; reflect_eq; by rewrite (Hx0,Hy0) /= (Hx',Hy').
Qed.
Lemma minor_trans : Transitive minor.
Proof.
move => G H I /minorRE [f mm_f] /minorRE [g mm_g].
apply: minor_of_rmap. exact: minor_rmap_comp mm_f mm_g.
Qed.
Definition total_minor_map (G H : sgraph) (phi : G -> H) :=
[/\ (forall y : H, exists x, phi x = y),
(forall y : H, connected (phi @^-1 y)) &
(forall x y : H, x -- y ->
exists x0 y0, [/\ x0 \in phi @^-1 x, y0 \in phi @^-1 y & x0 -- y0])].
Definition strict_minor (G H : sgraph) : Prop :=
exists phi : G -> H, total_minor_map phi.
Lemma map_of_total (G H : sgraph) (phi : G -> H) :
total_minor_map phi -> minor_map (Some \o phi).
Proof. case => A B C. split => // y. case: (A y) => x <-. by exists x. Qed.
Lemma strict_is_minor (G H : sgraph) : strict_minor G H -> minor G H.
Proof. move => [phi A]. exists (Some \o phi). exact: map_of_total. Qed.
Lemma sub_minor (S G : sgraph) : subgraph S G -> minor G S.
Proof.
move => [h inj_h hom_h].
pose phi x := if @idP (x \in codom h) is ReflectT p then Some (iinv p) else None.
exists phi; split.
- move => y. exists (h y). rewrite /phi.
case: {-}_ / idP => [p|]; by rewrite ?iinv_f ?codom_f.
- move => y x0 y0. rewrite !inE {1 2}/phi.
case: {-}_ / idP => // p /eqP[E1].
case: {-}_ / idP => // q /eqP[E2].
suff -> : (x0 = y0) by exact: connect0.
by rewrite -(f_iinv p) -(f_iinv q) E1 E2.
- move => x y A. move/hom_h : (A) => B.
exists (h x). exists (h y). rewrite !inE /phi B.
+ by do 2 case: {-}_ / idP => [?|]; rewrite ?codom_f ?iinv_f ?eqxx //.
+ apply: contraTneq A => /inj_h ->. by rewrite sgP.
Qed.
Lemma iso_strict_minor (G H : sgraph) : diso G H -> strict_minor H G.
Proof.
(* TODO: update proof to abstract against concrete implem of diso *)
move=> [[h g hgK ghK] /= hH gH].
have in_preim_g x y : (y \in g @^-1 x) = (y == h x).
rewrite -mem_preim; exact: can2_eq.
exists g; split.
+ by move=> y; exists (h y); rewrite hgK.
+ move=> y x1 x2. rewrite !in_preim_g => /eqP-> /eqP->. exact: connect0.
+ move=> x y xy. exists (h x); exists (h y). rewrite !in_preim_g.
split=> //. exact: hH.
Qed.
Fact minor_of_map (G H : sgraph) (phi : G -> option H):
minor_map phi -> minor G H.
Proof. case => *. by exists phi. Qed.
Fact minor_of_rmap (G H : sgraph) (phi : H -> {set G}):
minor_rmap phi -> minor G H.
Proof. move/minor_map_rmap. exact: minor_of_map. Qed.
Lemma minorRE G H : minor G H -> exists phi : H -> {set G}, minor_rmap phi.
Proof. case => phi /minor_rmap_map D. eexists. exact: D. Qed.
Lemma minor_rmap_comp (G H K : sgraph) (f : H -> {set G}) (g : K -> {set H}) :
minor_rmap f -> minor_rmap g -> minor_rmap (fun x => \bigcup_(y in g x) f y).
Proof.
move => [f1 f2 f3 f4] [g1 g2 g3 g4]. split => [x|x|x1 x2|x1 x2].
- case/set0Pn: (g1 x) => y Gy; case/set0Pn: (f1 y) => z Fz.
by apply/set0Pn; exists z; apply/bigcupP; exists y.
- move => z1 z2 /bigcupP [y1 y1_g z1_f] /bigcupP [y2 y2_g z2_f].
have/connectP [p] := (g2 _ _ _ y1_g y2_g).
elim: p z1 y1 y1_g z1_f => /= [|y1' p IHp] z1 y1 y1_g z1_f.
+ move => _ ?; subst.
apply: connect_restrict_mono; [exact: bigcup_sup y1_g|exact: f2].
+ rewrite -andbA => /and3P [/andP [H1 H2] H3 H4 H5].
case/neighborP: (f4 _ _ H3) => a [b] [a_fy1 b_fy1' ab].
apply: connect_trans (IHp _ _ H2 b_fy1' H4 H5).
apply: (@connect_trans _ _ a).
* apply: connect_restrict_mono. apply: bigcup_sup y1_g. exact: f2.
* apply: connect1 => /=.
by rewrite ab andbT (mem_bigcup y1) ?(mem_bigcup y1').
- move/g3 => Dx. apply/disjointP => z.
case/bigcupP => y1 y1_g z_fy1; case/bigcupP => y2 y2_g z_fy2.
suff: y1 != y2 by move/f3/disjointP/(_ z); apply.
apply: contraTneq y2_g => <-. by rewrite (disjointFr Dx).
- move/g4/neighborP => [y1] [y2] [Y1 Y2 /f4 /neighborP [z1] [z2] [? ? e]].
by apply/neighborP; exists z1; exists z2; rewrite (mem_bigcup y1) ?(mem_bigcup y2).
Qed.
Lemma minor_map_comp (G H K : sgraph) (f : G -> option H) (g : H -> option K) :
minor_map f -> minor_map g -> minor_map (obind g \o f).
Proof.
move=> [f1 f2 f3] [g1 g2 g3]. rewrite /comp; split.
- move => y. case: (g1 y) => y'. case: (f1 y') => x E1 ?.
exists x. by rewrite E1.
- move => z x y. rewrite !inE.
case Ef : (f x) => [fx|] //= gfx. case Eg : (f y) => [fy|] //= gfy.
move: (g2 z fx fy). rewrite !inE. case/(_ _ _)/Wrap => // /connectP => [[p]].
elim: p x fx Ef gfx => /= [|a p IH] x fx Ef gfx.
+ move => _ ?. subst fy.
move: (f2 fx x y). rewrite !inE Ef Eg. case/(_ _ _)/Wrap => //.
apply: connect_mono => a b /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite (eqP gfx) !eqxx.
+ rewrite !inE -!andbA => /and4P [H1 H2 H3 H4] H5.
case: (f1 a) => x' Hx'. apply: (connect_trans (y := x')); last exact: IH H5.
move/f3 : (H3) => [x0] [y0] [X1 X2 X3].
apply: (connect_trans (y := x0)); last apply: (connect_trans (y := y0)).
* move: (f2 fx x x0). rewrite !inE ?Ef ?eqxx in X1 *. case/(_ _ _)/Wrap => //.
apply: connect_mono => u v /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite H1.
* apply: connect1. rewrite /= !inE ?X3 ?andbT in X1 X2 *.
by rewrite (eqP X1) (eqP X2) /= (eqP gfx) eqxx.
* move: (f2 a y0 x' X2). case/(_ _)/Wrap. by rewrite !inE Hx'.
apply: connect_mono => u v /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite H2.
- move => x y /g3 [x'] [y'] [Hx' Hy'] /f3 [x0] [y0] [Hx0 Hy0 ?].
exists x0. exists y0. rewrite !inE in Hx' Hy' Hx0 Hy0 *.
split => //; reflect_eq; by rewrite (Hx0,Hy0) /= (Hx',Hy').
Qed.
Lemma minor_trans : Transitive minor.
Proof.
move => G H I /minorRE [f mm_f] /minorRE [g mm_g].
apply: minor_of_rmap. exact: minor_rmap_comp mm_f mm_g.
Qed.
Definition total_minor_map (G H : sgraph) (phi : G -> H) :=
[/\ (forall y : H, exists x, phi x = y),
(forall y : H, connected (phi @^-1 y)) &
(forall x y : H, x -- y ->
exists x0 y0, [/\ x0 \in phi @^-1 x, y0 \in phi @^-1 y & x0 -- y0])].
Definition strict_minor (G H : sgraph) : Prop :=
exists phi : G -> H, total_minor_map phi.
Lemma map_of_total (G H : sgraph) (phi : G -> H) :
total_minor_map phi -> minor_map (Some \o phi).
Proof. case => A B C. split => // y. case: (A y) => x <-. by exists x. Qed.
Lemma strict_is_minor (G H : sgraph) : strict_minor G H -> minor G H.
Proof. move => [phi A]. exists (Some \o phi). exact: map_of_total. Qed.
Lemma sub_minor (S G : sgraph) : subgraph S G -> minor G S.
Proof.
move => [h inj_h hom_h].
pose phi x := if @idP (x \in codom h) is ReflectT p then Some (iinv p) else None.
exists phi; split.
- move => y. exists (h y). rewrite /phi.
case: {-}_ / idP => [p|]; by rewrite ?iinv_f ?codom_f.
- move => y x0 y0. rewrite !inE {1 2}/phi.
case: {-}_ / idP => // p /eqP[E1].
case: {-}_ / idP => // q /eqP[E2].
suff -> : (x0 = y0) by exact: connect0.
by rewrite -(f_iinv p) -(f_iinv q) E1 E2.
- move => x y A. move/hom_h : (A) => B.
exists (h x). exists (h y). rewrite !inE /phi B.
+ by do 2 case: {-}_ / idP => [?|]; rewrite ?codom_f ?iinv_f ?eqxx //.
+ apply: contraTneq A => /inj_h ->. by rewrite sgP.
Qed.
Lemma iso_strict_minor (G H : sgraph) : diso G H -> strict_minor H G.
Proof.
(* TODO: update proof to abstract against concrete implem of diso *)
move=> [[h g hgK ghK] /= hH gH].
have in_preim_g x y : (y \in g @^-1 x) = (y == h x).
rewrite -mem_preim; exact: can2_eq.
exists g; split.
+ by move=> y; exists (h y); rewrite hgK.
+ move=> y x1 x2. rewrite !in_preim_g => /eqP-> /eqP->. exact: connect0.
+ move=> x y xy. exists (h x); exists (h y). rewrite !in_preim_g.
split=> //. exact: hH.
Qed.
Induced subgraphs are trivially minors
Section induced_rmap.
Variables (G : sgraph) (S : {set G}).
Definition induced_rmap := (fun x : induced S => [set val x]).
Lemma induced_rmapP : minor_rmap induced_rmap.
Proof.
split.
- move=> ?; exact: set10.
- move=> ?; exact: connected1.
- by move=> ? ?; rewrite disjoints1 inE val_eqE.
- by move=> ? ?; rewrite neighbor11.
Qed.
Lemma induced_rmap_sub u : induced_rmap u \subset S.
Proof. by rewrite /induced_rmap sub1set; apply: (valP u). Qed.
Lemma induced_minor : minor G (induced S).
Proof. exact: minor_of_rmap induced_rmapP. Qed.
End induced_rmap.
Definition edge_surjective (G1 G2 : sgraph) (h : G1 -> G2) :=
forall x y : G2 , x -- y -> exists x0 y0, [/\ h x0 = x, h y0 = y & x0 -- y0].
Variables (G : sgraph) (S : {set G}).
Definition induced_rmap := (fun x : induced S => [set val x]).
Lemma induced_rmapP : minor_rmap induced_rmap.
Proof.
split.
- move=> ?; exact: set10.
- move=> ?; exact: connected1.
- by move=> ? ?; rewrite disjoints1 inE val_eqE.
- by move=> ? ?; rewrite neighbor11.
Qed.
Lemma induced_rmap_sub u : induced_rmap u \subset S.
Proof. by rewrite /induced_rmap sub1set; apply: (valP u). Qed.
Lemma induced_minor : minor G (induced S).
Proof. exact: minor_of_rmap induced_rmapP. Qed.
End induced_rmap.
Definition edge_surjective (G1 G2 : sgraph) (h : G1 -> G2) :=
forall x y : G2 , x -- y -> exists x0 y0, [/\ h x0 = x, h y0 = y & x0 -- y0].
(* The following should hold but does not fit the use case for minors *)
Lemma rename_sdecomp (T : forest) (G H : sgraph) D (dec_D : sdecomp T G D) (h :G -> H) :
hom_s h -> surjective h -> edge_surjective h ->
(forall x y, h x = h y -> exists t, (x \in D t) && (y \in D t)) ->
@sdecomp T _ (rename D h).
Abort.
Lemma width_minor (G H : sgraph) (T : forest) (B : T -> {set G}) :
sdecomp T G B -> minor G H -> exists B', @sdecomp T H B' /\ width B' <= width B.
Proof.
move => decT [phi [p1 p2 p3]].
pose B' t := [set x : H | [exists (x0 | x0 \in B t), phi x0 == Some x]].
exists B'. split.
- split.
+ move => y. case: (p1 y) => x /eqP Hx.
case: (sbag_cover decT x) => t Ht.
exists t. apply/pimsetP. by exists x.
+ move => x y xy. move/p3: xy => [x0] [y0]. rewrite !inE => [[H1 H2 H3]].
case: (sbag_edge decT H3) => t /andP [T1 T2]. exists t.
apply/andP; split; apply/pimsetP; by [exists x0|exists y0].
+ have conn_pre1 t1 t2 x x0 :
phi x0 == Some x -> x0 \in B t1 -> x0 \in B t2 ->
connect (restrict [pred t | x \in B' t] sedge) t1 t2.
{ move => H1 H2 H3. move: (sbag_conn decT H2 H3).
apply: connect_mono => u v /=. rewrite !in_simpl -!andbA => /and3P [? ? ?].
apply/and3P; split => //; apply/pimsetP; eexists; eauto. }
move => x t1 t2 /pimsetP [x0 X1 X2] /pimsetP [y0 Y1 Y2].
move: (p2 x x0 y0). rewrite !inE. case/(_ _ _)/Wrap => // /connectP [p].
elim: p t1 x0 X1 X2 => /= [|z0 p IH] t1 x0 X1 X2.
* move => _ E. subst x0. exact: conn_pre1 X1 Y1.
* rewrite -!andbA => /and3P [H1 H2 /andP [H3 H4] H5].
case: (sbag_edge decT H3) => t /andP [T1 T2].
apply: (connect_trans (y := t)).
-- move => {p IH H4 H5 y0 Y1 Y2 X2}. rewrite !inE in H1 H2.
exact: conn_pre1 X1 T1.
-- apply: IH H4 H5 => //. by rewrite inE in H2.
- apply: bigmax_leq_pointwise => t _. exact: pimset_card.
Qed.
Lemma minor_of_clique (G : sgraph) (S : {set G}) n :
n <= #|S| -> clique S -> minor G 'K_n.
Proof.
case/card_geqP => s [uniq_s /eqP size_s sub_s clique_S].
pose t := Tuple size_s.
pose phi (i : 'K_n) := [set tnth t i].
suff H: minor_rmap phi by apply (minor_of_map (minor_map_rmap H)).
split.
- move => i. apply/set0Pn; exists (tnth t i). by rewrite !inE.
- move => i. exact: connected1.
- move => i j iNj. rewrite disjoints1. apply: contraNN iNj.
by rewrite inE tnth_uniq.
- move => i j /= ?. apply/neighborP. exists (tnth t i); exists (tnth t j).
rewrite !inE !tnth_uniq ?eqxx //.
rewrite clique_S // ?tnth_uniq // ?sub_s //; exact: mem_tnth.
Qed.
Lemma Kn_clique n : clique [set: 'K_n].
Proof. by []. Qed.
Definition K4_free (G : sgraph) := ~ minor G K4.
Lemma minor_K4_free (G H : sgraph) :
minor G H -> K4_free G -> K4_free H.
Proof. move => M F C. apply: F. exact: minor_trans C. Qed.
Lemma subgraph_K4_free (G H : sgraph) :
subgraph H G -> K4_free G -> K4_free H.
Proof. move/sub_minor. exact: minor_K4_free. Qed.
Lemma iso_K4_free (G H : sgraph) :
diso G H -> K4_free H -> K4_free G.
Proof. move => iso_GH. apply: subgraph_K4_free. exact: iso_subgraph. Qed.
Lemma treewidth_K_free (G : sgraph) (T : forest) (B : T -> {set G}) m :
sdecomp T G B -> width B <= m -> ~ minor G 'K_m.+1.
Proof.
move => decT wT M. case: (width_minor decT M) => B' [B1 B2].
suff: m < m by rewrite ltnn.
apply: leq_trans wT. apply: leq_trans B2. apply: (Km_width B1).
Qed.
Lemma TW2_K4_free (G : sgraph) (T : forest) (B : T -> {set G}) :
sdecomp T G B -> width B <= 3 -> K4_free G.
Proof. exact: treewidth_K_free. Qed.
Lemma small_K_free m (G : sgraph): #|G| <= m -> ~ minor G 'K_m.+1.
Proof.
move => H. case: (decomp_small H) => T [D] [decD wD].
exact: treewidth_K_free decD wD.
Qed.
(* TODO: theory for induced [set~ : None : add_node] *)
Lemma minor_induced_add_node (G : sgraph) (N : {set G}) : @minor_map (induced [set~ None : add_node G N]) G val.
Proof.
have inNoneD (a : G) : Some a \in [set~ None] by rewrite !inE. split.
+ move=> y. by exists (Sub (Some y) (inNoneD y)).
+ move=> y x1 x2. rewrite -!mem_preim =>/eqP<- /eqP/val_inj->. exact: connect0.
+ move=> x y xy. exists (Sub (Some x) (inNoneD x)).
exists (Sub (Some y) (inNoneD y)). by split; rewrite -?mem_preim.
Qed.
Lemma add_node_minor (G G' : sgraph) (U : {set G}) (U' : {set G'}) (phi : G -> G') :
(forall y, y \in U' -> exists2 x, x \in U & phi x = y) ->
total_minor_map phi ->
minor (add_node G U) (add_node G' U').
Proof.
move => H [M1 M2 M3].
apply: strict_is_minor. exists (omap phi). split.
- case => [y|]; last by exists None. case: (M1 y) => x E.
exists (Some x). by rewrite /= E.
- move => [y|].
+ rewrite preim_omap_Some. exact: connected_add_node.
+ rewrite preim_omap_None. exact: connected1.
- move => [x|] [y|] //=.
+ move/M3 => [x0] [y0] [H1 H2 H3]. exists (Some x0); exists (Some y0).
by rewrite !preim_omap_Some !imset_f.
+ move/H => [x0] H1 H2. exists (Some x0); exists None.
rewrite !preim_omap_Some !preim_omap_None !inE !eqxx !imset_f //.
by rewrite -mem_preim H2.
+ move/H => [y0] H1 H2. exists None; exists (Some y0).
rewrite !preim_omap_Some !preim_omap_None !inE !eqxx !imset_f //.
by rewrite -mem_preim H2.
Qed.
Lemma minor_with (H G': sgraph) (S : {set H}) (i : H) (N : {set G'})
(phi : (sgraph.induced S) -> option G') :
i \notin S ->
(forall y, y \in N -> exists2 x , x \in phi @^-1 (Some y) & val x -- i) ->
@minor_map (sgraph.induced S) G' phi ->
minor H (add_node G' N).
Proof.
move => Hi Hphi mm_phi.
pose psi (u:H) : option (add_node G' N) :=
match @idP (u \in S) with
| ReflectT p => obind (fun x => Some (Some x)) (phi (Sub u p))
| ReflectF _ => if u == i then Some None else None
end.
(* NOTE: use (* case: {-}_ / idP *) to analyze psi *)
have psi_G' (a : G') : psi @^-1 (Some (Some a)) = val @: (phi @^-1 (Some a)).
{ apply/setP => x. rewrite !inE. apply/eqP/imsetP.
+ rewrite /psi. case: {-}_ / idP => p; last by case: ifP.
case E : (phi _) => [b|//] /= [<-]. exists (Sub x p) => //. by rewrite !inE E.
+ move => [[/= b Hb] Pb] ->. rewrite /psi. case: {-}_ / idP => //= Hb'.
rewrite !inE (bool_irrelevance Hb Hb') in Pb. by rewrite (eqP Pb). }
have psi_None : psi @^-1 (Some None) = [set i].
{ apply/setP => z. rewrite !inE /psi.
case: {-}_ / idP => [p|_]; last by case: ifP.
have Hz : z != i. { apply: contraNN Hi. by move/eqP <-. }
case: (phi _) => [b|]; by rewrite (negbTE Hz). }
case: mm_phi => M1 M2 M3. exists psi;split.
- case.
+ move => a. case: (M1 a) => x E. exists (val x). apply/eqP.
rewrite mem_preim psi_G' imset_f //. by rewrite !inE E.
+ exists i. rewrite /psi. move: Hi.
case: {-}_ / idP => [? ?|_ _]; by [contrab|rewrite eqxx].
- case.
+ move => y. move: (M2 y). rewrite psi_G'. exact: connected_in_subgraph.
+ rewrite psi_None. exact: connected1.
- move => [a|] [b|]; last by rewrite sg_irrefl.
+ move => /= /M3 [x0] [y0] [? ? ?].
exists (val x0). exists (val y0). by rewrite !psi_G' !imset_f.
+ move => /= /Hphi [x0] ? ?. exists (val x0); exists i. by rewrite psi_None set11 !psi_G' !imset_f.
+ move => /= /Hphi [x0] ? ?. exists i;exists (val x0). by rewrite sg_sym psi_None set11 !psi_G' !imset_f.
Qed.
Lemma non_forerst_K3 (G : sgraph) : ~ is_forest [set: G] -> minor G 'K_3.
Proof.
move/is_forestP/is_forestPn => [x0] [y0] [p0] [q0] [_ _ pDq].
have [x [y] [p1] [p2] [p12_disj p1_ne]] := disjoint_part (valP p0) (valP q0) pDq.
clear x0 y0 p0 q0 pDq.
pose phi (i : 'K_3) : {set G} :=
match i with
| Ordinal 0 _ => [set x]
| Ordinal 1 _ => interior p1
| Ordinal 2 _ => y |: interior p2
| Ordinal _ _ => set0
end.
suff: minor_rmap phi by apply: minor_of_rmap.
have xDy : x != y.
{ apply: contra_neq p1_ne => ?; subst y.
by rewrite /path_of_ipath (irredxx (valP p1)) interior_idp. }
apply: ordered_rmap; first exact: ord_inj; split.
- case => [[|[|[|i]]] Hi] //=; [exact: set10 | exact: setU1_neq].
- case => [[|[|[|i]]] Hi] //=.
+ exact: connected1.
+ exact: connected_interior.
+ exact: connected_interiorR.
- case => [[|[|[|i]]] Hi]; case => [[|[|[|j]]] Hj] //= _ _.
+ by rewrite disjoints1 !inE eqxx.
+ by rewrite disjoints1 !inE eqxx (negbTE xDy).
+ rewrite disjoint_sym disjointsU // ?disjoints1 1?disjoint_sym //.
by rewrite !inE eqxx.
- case => [[|[|[|i]]] Hi]; case => [[|[|[|j]]] Hj] //= _ _.
+ apply: path_neighborL => //. by rewrite inE.
+ exact: neighbor_interiorL.
+ apply: neighborUl. rewrite neighborC.
apply: path_neighborR => //. by rewrite inE.
Qed.
Theorem K3_free_forest G : ~ minor G 'K_3 <-> is_forest [set: G].
Proof.
split.
- rewrite (rwP (is_forestP _)). apply: contra_notT. move/is_forestP.
exact: non_forerst_K3.
- case/forest_TW1 => T [B []]. exact: treewidth_K_free.
Qed.
Theorem TW1_forest G : (exists T B, sdecomp T G B /\ width B <= 2) <-> is_forest [set: G].
Proof.
split => [[T] [B] [decB wB]|]; last exact: forest_TW1.
apply/K3_free_forest. exact: treewidth_K_free decB wB.
Qed.