From HB Require Import structures.
Require Import Setoid Morphisms.
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries setoid_bigop structures.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Require Import Setoid Morphisms.
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries setoid_bigop structures.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
2pdom algebra, tests, initial algebra of terms
2pdom algebra (the top-free fragment of 2p algebra)
HB.mixin Record Ops_of_Type A :=
{ dot: A -> A -> A;
par: A -> A -> A;
cnv: A -> A;
dom: A -> A;
one: A;
top: A; (* top is left uninterpreted in 2pdom *)
}.
HB.structure Definition Ops := { A of Ops_of_Type A & }.
Arguments one {_}: simpl never.
Arguments top {_}: simpl never.
Arguments dot: simpl never.
Arguments par: simpl never.
Arguments cnv: simpl never.
Arguments dom: simpl never.
Declare Scope pttdom_ops.
Bind Scope pttdom_ops with Ops.type.
Delimit Scope pttdom_ops with ptt.
Open Scope pttdom_ops.
Notation "x ∥ y" := (par x y) (left associativity, at level 40, format "x ∥ y"): pttdom_ops.
Notation "x · y" := (dot x y) (left associativity, at level 25, format "x · y"): pttdom_ops.
Notation "x °" := (cnv x) (left associativity, at level 5, format "x °"): pttdom_ops.
Notation "1" := (one): pttdom_ops.
(* 2pdom axioms *)
HB.mixin Record Pttdom_of_Ops A of Ops_of_Type A & Setoid_of_Type A :=
{ dot_eqv: Proper (eqv ==> eqv ==> eqv) (dot : A -> A -> A);
par_eqv: Proper (eqv ==> eqv ==> eqv) (par : A -> A -> A);
cnv_eqv: Proper (eqv ==> eqv) (cnv : A -> A);
dom_eqv: Proper (eqv ==> eqv) (dom : A -> A);
parA: forall x y z: A, x ∥ (y ∥ z) ≡ (x ∥ y) ∥ z;
parC: forall x y: A, x ∥ y ≡ y ∥ x;
dotA: forall x y z: A, x · (y · z) ≡ (x · y) · z;
dotx1: forall x: A, x · 1 ≡ x;
cnvI: forall x: A, x°° ≡ x;
cnvpar: forall x y: A, (x ∥ y)° ≡ x° ∥ y°;
cnvdot: forall x y: A, (x · y)° ≡ y° · x°;
par11: (1 : A) ∥ 1 ≡ 1;
A10: forall x y: A, 1 ∥ x·y ≡ dom (x ∥ y°);
A13: forall x y: A, dom(x·y) ≡ dom(x·dom y);
A14: forall x y z: A, dom x·(y∥z) ≡ dom x·y ∥ z;
}.
HB.structure Definition Pttdom := { A of Pttdom_of_Ops A & }.
Notation pttdom := Pttdom.type.
Existing Instances dot_eqv par_eqv cnv_eqv dom_eqv.
Class is_test (X : pttdom) (x : X) := { testE : dom x ≡ x }.
(* Coercion ops_of (X : pttdom) (x : Pttdom.sort X) : Ops.sort X := x. *)
(* Coercion setoid_of (X : Ops) (x : Pttdom.sort X) : Setoid.sort X := x. *)
{ dot: A -> A -> A;
par: A -> A -> A;
cnv: A -> A;
dom: A -> A;
one: A;
top: A; (* top is left uninterpreted in 2pdom *)
}.
HB.structure Definition Ops := { A of Ops_of_Type A & }.
Arguments one {_}: simpl never.
Arguments top {_}: simpl never.
Arguments dot: simpl never.
Arguments par: simpl never.
Arguments cnv: simpl never.
Arguments dom: simpl never.
Declare Scope pttdom_ops.
Bind Scope pttdom_ops with Ops.type.
Delimit Scope pttdom_ops with ptt.
Open Scope pttdom_ops.
Notation "x ∥ y" := (par x y) (left associativity, at level 40, format "x ∥ y"): pttdom_ops.
Notation "x · y" := (dot x y) (left associativity, at level 25, format "x · y"): pttdom_ops.
Notation "x °" := (cnv x) (left associativity, at level 5, format "x °"): pttdom_ops.
Notation "1" := (one): pttdom_ops.
(* 2pdom axioms *)
HB.mixin Record Pttdom_of_Ops A of Ops_of_Type A & Setoid_of_Type A :=
{ dot_eqv: Proper (eqv ==> eqv ==> eqv) (dot : A -> A -> A);
par_eqv: Proper (eqv ==> eqv ==> eqv) (par : A -> A -> A);
cnv_eqv: Proper (eqv ==> eqv) (cnv : A -> A);
dom_eqv: Proper (eqv ==> eqv) (dom : A -> A);
parA: forall x y z: A, x ∥ (y ∥ z) ≡ (x ∥ y) ∥ z;
parC: forall x y: A, x ∥ y ≡ y ∥ x;
dotA: forall x y z: A, x · (y · z) ≡ (x · y) · z;
dotx1: forall x: A, x · 1 ≡ x;
cnvI: forall x: A, x°° ≡ x;
cnvpar: forall x y: A, (x ∥ y)° ≡ x° ∥ y°;
cnvdot: forall x y: A, (x · y)° ≡ y° · x°;
par11: (1 : A) ∥ 1 ≡ 1;
A10: forall x y: A, 1 ∥ x·y ≡ dom (x ∥ y°);
A13: forall x y: A, dom(x·y) ≡ dom(x·dom y);
A14: forall x y z: A, dom x·(y∥z) ≡ dom x·y ∥ z;
}.
HB.structure Definition Pttdom := { A of Pttdom_of_Ops A & }.
Notation pttdom := Pttdom.type.
Existing Instances dot_eqv par_eqv cnv_eqv dom_eqv.
Class is_test (X : pttdom) (x : X) := { testE : dom x ≡ x }.
(* Coercion ops_of (X : pttdom) (x : Pttdom.sort X) : Ops.sort X := x. *)
(* Coercion setoid_of (X : Ops) (x : Pttdom.sort X) : Setoid.sort X := x. *)
Section derived.
Variable X: pttdom.
Implicit Types u v x y z: X.
Lemma cnv1: 1° ≡ @one X.
Proof. rewrite -[1°]dotx1 -{2}[1]cnvI. by rewrite -cnvdot dotx1 cnvI. Qed.
Lemma dot1x x: 1·x ≡ x.
Proof. by rewrite -[1·x]cnvI cnvdot cnv1 dotx1 cnvI. Qed.
Lemma cnv_inj x y: x° ≡ y° -> x ≡ y.
Proof. intro. rewrite <-(cnvI x), <-(cnvI y). by apply cnv_eqv. Qed.
Lemma dotcnv x y: x·y ≡ (y°·x°)°.
Proof. apply cnv_inj. by rewrite cnvdot cnvI. Qed.
Variable X: pttdom.
Implicit Types u v x y z: X.
Lemma cnv1: 1° ≡ @one X.
Proof. rewrite -[1°]dotx1 -{2}[1]cnvI. by rewrite -cnvdot dotx1 cnvI. Qed.
Lemma dot1x x: 1·x ≡ x.
Proof. by rewrite -[1·x]cnvI cnvdot cnv1 dotx1 cnvI. Qed.
Lemma cnv_inj x y: x° ≡ y° -> x ≡ y.
Proof. intro. rewrite <-(cnvI x), <-(cnvI y). by apply cnv_eqv. Qed.
Lemma dotcnv x y: x·y ≡ (y°·x°)°.
Proof. apply cnv_inj. by rewrite cnvdot cnvI. Qed.
(* Definition is_test x := dom x ≡ x. *)
Record test := Test{ elem_of :> X ; testP : is_test elem_of }.
Global Instance test_test (a : test) : is_test (elem_of a).
Proof. exact: testP. Qed.
Implicit Types a b c d : X.
Lemma is_test_alt x: dom x ≡ x <-> x∥1 ≡ x.
Proof.
split=>E.
- rewrite -{1}E -{1}(dotx1 (dom x)) -A14.
by rewrite par11 dotx1.
- by rewrite -E -{1}cnv1 -A10 dotx1 parC.
Qed.
Lemma domtst a of is_test a : dom a ≡ a.
Proof. exact: testE. Qed.
Lemma tstpar1 a of is_test a : a ∥ 1 ≡ a.
Proof. by apply/is_test_alt; rewrite domtst. Qed.
Lemma one_test: is_test (1:X).
Proof. constructor. by rewrite -{1}par11 -{2}cnv1 -A10 dotx1 par11. Qed.
Global Existing Instance one_test.
Lemma dom_test x: is_test (dom x).
Proof. constructor. by rewrite -{1}[dom x]dot1x -A13 dot1x. Qed.
Global Existing Instance dom_test.
Lemma par_test a u of is_test a : is_test (a∥u).
Proof.
constructor; apply/is_test_alt.
by rewrite -parA (parC u) parA tstpar1.
Qed.
Global Existing Instance par_test.
Lemma cnvtst a of is_test a : a° ≡ a.
Proof.
rewrite -[a]tstpar1 cnvpar cnv1 -(dot1x (a°)) parC A10 cnvI parC.
apply: domtst.
Qed.
Lemma cnv_test a of is_test a : is_test (a°).
Proof. constructor. by rewrite is_test_alt cnvtst tstpar1. Qed.
Global Existing Instance cnv_test.
Lemma tstpar a x y of is_test a : a·(x∥y) ≡ a·x ∥ y.
Proof. rewrite -[a]domtst. apply A14. Qed.
Lemma tstpar_r a x y of is_test a : a·(x∥y) ≡ x ∥ a·y.
Proof. by rewrite parC tstpar parC. Qed.
Lemma pardot a b of is_test a & is_test b : a ∥ b ≡ a·b.
Proof.
by rewrite -{2}(@tstpar1 b) (parC _ 1) tstpar dotx1.
Qed.
Lemma dotC a b of is_test a & is_test b : a·b ≡ b·a.
Proof. by rewrite -pardot parC pardot. Qed.
Lemma dot_test a b of is_test a & is_test b : is_test (a·b).
Proof. constructor. rewrite -pardot. apply: domtst. Qed.
Global Existing Instance dot_test.
(* (** automatised inference of tests *) *)
(* Definition infer_test x b (e: elem_of b = x) := b. *)
(* Notation " x " := (@infer_test x _ erefl). *)
Notation "[ x ]" := (@Test x _).
Record test := Test{ elem_of :> X ; testP : is_test elem_of }.
Global Instance test_test (a : test) : is_test (elem_of a).
Proof. exact: testP. Qed.
Implicit Types a b c d : X.
Lemma is_test_alt x: dom x ≡ x <-> x∥1 ≡ x.
Proof.
split=>E.
- rewrite -{1}E -{1}(dotx1 (dom x)) -A14.
by rewrite par11 dotx1.
- by rewrite -E -{1}cnv1 -A10 dotx1 parC.
Qed.
Lemma domtst a of is_test a : dom a ≡ a.
Proof. exact: testE. Qed.
Lemma tstpar1 a of is_test a : a ∥ 1 ≡ a.
Proof. by apply/is_test_alt; rewrite domtst. Qed.
Lemma one_test: is_test (1:X).
Proof. constructor. by rewrite -{1}par11 -{2}cnv1 -A10 dotx1 par11. Qed.
Global Existing Instance one_test.
Lemma dom_test x: is_test (dom x).
Proof. constructor. by rewrite -{1}[dom x]dot1x -A13 dot1x. Qed.
Global Existing Instance dom_test.
Lemma par_test a u of is_test a : is_test (a∥u).
Proof.
constructor; apply/is_test_alt.
by rewrite -parA (parC u) parA tstpar1.
Qed.
Global Existing Instance par_test.
Lemma cnvtst a of is_test a : a° ≡ a.
Proof.
rewrite -[a]tstpar1 cnvpar cnv1 -(dot1x (a°)) parC A10 cnvI parC.
apply: domtst.
Qed.
Lemma cnv_test a of is_test a : is_test (a°).
Proof. constructor. by rewrite is_test_alt cnvtst tstpar1. Qed.
Global Existing Instance cnv_test.
Lemma tstpar a x y of is_test a : a·(x∥y) ≡ a·x ∥ y.
Proof. rewrite -[a]domtst. apply A14. Qed.
Lemma tstpar_r a x y of is_test a : a·(x∥y) ≡ x ∥ a·y.
Proof. by rewrite parC tstpar parC. Qed.
Lemma pardot a b of is_test a & is_test b : a ∥ b ≡ a·b.
Proof.
by rewrite -{2}(@tstpar1 b) (parC _ 1) tstpar dotx1.
Qed.
Lemma dotC a b of is_test a & is_test b : a·b ≡ b·a.
Proof. by rewrite -pardot parC pardot. Qed.
Lemma dot_test a b of is_test a & is_test b : is_test (a·b).
Proof. constructor. rewrite -pardot. apply: domtst. Qed.
Global Existing Instance dot_test.
(* (** automatised inference of tests *) *)
(* Definition infer_test x b (e: elem_of b = x) := b. *)
(* Notation " x " := (@infer_test x _ erefl). *)
Notation "[ x ]" := (@Test x _).
Definition eqv_test (a b : test) := elem_of a ≡ elem_of b.
Arguments eqv_test _ _ /.
Lemma eqv_test_equiv: Equivalence eqv_test.
Proof.
split => [x|x y|x y z]; rewrite /eqv_test /=.
reflexivity. by symmetry. by transitivity (elem_of y).
Qed.
HB.instance Definition pttdom_test_setoid :=
Setoid_of_Type.Build test eqv_test_equiv.
Lemma infer_testE a of is_test a : elem_of [a] ≡ a.
Proof. by []. Qed.
Lemma eqv_testE a b of is_test a & is_test b : [a] ≡ [b] <-> a ≡ b.
Proof. by []. Qed.
Section M.
Definition tst_dot (a b : test) : test := [elem_of a · elem_of b].
Local Infix "·" := tst_dot.
Lemma tst_dot_eqv: Proper (eqv ==> eqv ==> eqv) tst_dot.
Proof. intros [a] [b] ? [c] [d] ?. by apply dot_eqv. Qed.
Lemma tst_dotA: forall a b c : test, a·(b·c) ≡ (a·b)·c.
Proof. intros [a] [b] [c]. apply dotA. Qed.
Lemma tst_dotC: forall a b : test, a·b ≡ b·a.
Proof. intros. by rewrite /tst_dot eqv_testE -pardot parC pardot. Qed.
Lemma tst_dotU: forall a : test , a·[1] ≡ a.
Proof. intros [a]. apply dotx1. Qed.
Definition pttdom_monoid_laws :=
mkComMonoidLaws tst_dot_eqv tst_dotA tst_dotC tst_dotU.
HB.instance Definition pttdom_monoid :=
ComMonoid_of_Setoid.Build test pttdom_monoid_laws.
End M.
Arguments eqv_test _ _ /.
Lemma eqv_test_equiv: Equivalence eqv_test.
Proof.
split => [x|x y|x y z]; rewrite /eqv_test /=.
reflexivity. by symmetry. by transitivity (elem_of y).
Qed.
HB.instance Definition pttdom_test_setoid :=
Setoid_of_Type.Build test eqv_test_equiv.
Lemma infer_testE a of is_test a : elem_of [a] ≡ a.
Proof. by []. Qed.
Lemma eqv_testE a b of is_test a & is_test b : [a] ≡ [b] <-> a ≡ b.
Proof. by []. Qed.
Section M.
Definition tst_dot (a b : test) : test := [elem_of a · elem_of b].
Local Infix "·" := tst_dot.
Lemma tst_dot_eqv: Proper (eqv ==> eqv ==> eqv) tst_dot.
Proof. intros [a] [b] ? [c] [d] ?. by apply dot_eqv. Qed.
Lemma tst_dotA: forall a b c : test, a·(b·c) ≡ (a·b)·c.
Proof. intros [a] [b] [c]. apply dotA. Qed.
Lemma tst_dotC: forall a b : test, a·b ≡ b·a.
Proof. intros. by rewrite /tst_dot eqv_testE -pardot parC pardot. Qed.
Lemma tst_dotU: forall a : test , a·[1] ≡ a.
Proof. intros [a]. apply dotx1. Qed.
Definition pttdom_monoid_laws :=
mkComMonoidLaws tst_dot_eqv tst_dotA tst_dotC tst_dotU.
HB.instance Definition pttdom_monoid :=
ComMonoid_of_Setoid.Build test pttdom_monoid_laws.
End M.
(* dualised equality (to get the labels structure below) *)
Definition eqv' x y := x ≡ y°.
Arguments eqv' _ _ /.
Lemma eqv'_sym: Symmetric eqv'.
Proof. move=> x y /= H. apply cnv_inj. by rewrite cnvI H. Qed.
Lemma eqv01 x y z: x ≡ y -> eqv' y z -> eqv' x z.
Proof. by move=> /= ->. Qed.
Lemma eqv11 x y z: eqv' x y -> eqv' y z -> x ≡ z.
Proof. move=> /= -> ->. apply cnvI. Qed.
HB.instance Definition pttdom_elabel :=
Elabel_of_Setoid.Build X eqv'_sym eqv01 eqv11.
(* Lemmas to turn pttdom expressions into (projections of) tests *)
Lemma par1tst u : 1 ∥ u = elem_of [1∥u]. by []. Qed.
Lemma paratst (a : test) u : elem_of a ∥ u = elem_of [elem_of a∥u]. by []. Qed.
Lemma dom_tst u : dom u = elem_of [dom u]. by []. Qed.
(* this allows rewriting an equivalence between tests inside a pttdom expression *)
Lemma rwT (a b: test) : a ≡ b -> elem_of a ≡ elem_of b. by []. Qed.
Lemma partst u v a of is_test a : (u ∥ v)·a ≡ u ∥ v·a.
Proof.
apply cnv_inj. rewrite cnvdot 2!cnvpar cnvdot.
by rewrite parC tstpar parC.
Qed.
Lemma par_tst_cnv a u of is_test a : a ∥ u° ≡ a ∥ u.
Proof. by rewrite -[a∥u°]cnvtst cnvpar cnvtst cnvI. Qed.
Lemma eqvb_par1 a u v (b : bool) of is_test a : u ≡[b] v -> a ∥ u ≡ a ∥ v.
Proof. case: b => [->|-> //]. exact: par_tst_cnv. Qed.
(* used twice in reduce in reduction.v *)
Lemma reduce_shuffle v a c d of is_test a & is_test c & is_test d :
c·(d·a)·(1∥v) ≡ a ∥ c·v·d.
Proof.
rewrite -!dotA -tstpar_r; apply: dot_eqv => //.
by rewrite -partst tstpar dotx1 dotC.
Qed.
(* lemma for nt_correct *)
Lemma par_nontest u v a b c d of is_test a & is_test b & is_test c & is_test d :
a·u·b∥c·v·d ≡ (a·c)·(u∥v)·(b·d).
Proof. by rewrite -partst -[a·u·b]dotA -tstpar parC -tstpar -partst !dotA parC. Qed.
(* used in open.v *)
Lemma eqvbN u v : u ≡[false] v -> u ≡ v. by []. Qed.
Lemma eqvbT u v : u ≡[true] v -> u ≡ v°. by []. Qed.
Lemma eqvE' u v : (u ≡' v) = (u ≡ v°). by []. Qed.
Lemma eqvb_neq u v (b : bool) : u ≡[~~b] v <-> u ≡[b] v°.
Proof. by split; apply: eqvb_transL; rewrite ?(addbN,addNb) addbb /= ?eqvE' ?cnvI. Qed.
End derived.
(* Coercion pttdom_labels: pttdom >-> labels. *)
Notation "[ x ]" := (@Test _ x _).
(* Notation " x " := (@infer_test _ x*)
Section terms.
Variable A: Type.
Inductive term :=
| tm_dot: term -> term -> term
| tm_par: term -> term -> term
| tm_cnv: term -> term
| tm_dom: term -> term
| tm_one: term
| tm_var: A -> term.
Bind Scope pttdom_ops with term.
Section e.
Variable (X: Ops.type) (f: A -> X).
Fixpoint eval (u: term): X :=
match u with
| tm_dot u v => eval u · eval v
| tm_par u v => eval u ∥ eval v
| tm_cnv u => (eval u) °
| tm_dom u => dom (eval u)
| tm_one => 1
| tm_var a => f a
end.
End e.
(* axiomatic equality on terms *)
(* (via impredicative encoding to avoid repeating the axioms in an inductive definition)) *)
Definition tm_eqv (u v: term): Prop :=
forall (X: pttdom) (f: A -> X), eval f u ≡ eval f v.
Hint Unfold tm_eqv : core.
Lemma tm_eqv_equivalence: Equivalence tm_eqv.
Proof.
constructor.
now intro.
intros ?? H X f. specialize (H X f). by symmetry.
intros ??? H H' X f. specialize (H X f). specialize (H' X f). etransitivity. apply H. apply H'.
Qed.
HB.instance Definition tm_setoid := Setoid_of_Type.Build term tm_eqv_equivalence.
HB.instance Definition tm_ops := Ops_of_Type.Build term tm_dot tm_par tm_cnv tm_dom tm_one tm_one.
(* Arguments eqv { _ } _ _ / . *)
Lemma tm_eqv_eqv (u v: term) (X: pttdom) (f: A -> X) :
u ≡ v -> eval f u ≡ eval f v.
Proof. exact. Qed.
Definition tm_pttdom : Pttdom_of_Ops.axioms_ term tm_ops tm_setoid.
Proof.
refine (Pttdom_of_Ops.Build term _ _ _ _ _ _ _ _ _ _ _ _ _ _ _).
abstract (by repeat intro; simpl; apply dot_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply par_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnv_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply dom_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply parA; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply parC; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply dotA; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply dotx1; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnvI; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnvpar; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnvdot; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply par11; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply A10; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply A13; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply A14; apply: tm_eqv_eqv).
Defined.
HB.instance Definition _ := tm_pttdom.
HB.instance Definition _ := Elabel.copy term [the pttdom of term].
Notation test := (test [the pttdom of term]).
Variable A: Type.
Inductive term :=
| tm_dot: term -> term -> term
| tm_par: term -> term -> term
| tm_cnv: term -> term
| tm_dom: term -> term
| tm_one: term
| tm_var: A -> term.
Bind Scope pttdom_ops with term.
Section e.
Variable (X: Ops.type) (f: A -> X).
Fixpoint eval (u: term): X :=
match u with
| tm_dot u v => eval u · eval v
| tm_par u v => eval u ∥ eval v
| tm_cnv u => (eval u) °
| tm_dom u => dom (eval u)
| tm_one => 1
| tm_var a => f a
end.
End e.
(* axiomatic equality on terms *)
(* (via impredicative encoding to avoid repeating the axioms in an inductive definition)) *)
Definition tm_eqv (u v: term): Prop :=
forall (X: pttdom) (f: A -> X), eval f u ≡ eval f v.
Hint Unfold tm_eqv : core.
Lemma tm_eqv_equivalence: Equivalence tm_eqv.
Proof.
constructor.
now intro.
intros ?? H X f. specialize (H X f). by symmetry.
intros ??? H H' X f. specialize (H X f). specialize (H' X f). etransitivity. apply H. apply H'.
Qed.
HB.instance Definition tm_setoid := Setoid_of_Type.Build term tm_eqv_equivalence.
HB.instance Definition tm_ops := Ops_of_Type.Build term tm_dot tm_par tm_cnv tm_dom tm_one tm_one.
(* Arguments eqv { _ } _ _ / . *)
Lemma tm_eqv_eqv (u v: term) (X: pttdom) (f: A -> X) :
u ≡ v -> eval f u ≡ eval f v.
Proof. exact. Qed.
Definition tm_pttdom : Pttdom_of_Ops.axioms_ term tm_ops tm_setoid.
Proof.
refine (Pttdom_of_Ops.Build term _ _ _ _ _ _ _ _ _ _ _ _ _ _ _).
abstract (by repeat intro; simpl; apply dot_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply par_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnv_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply dom_eqv; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply parA; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply parC; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply dotA; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply dotx1; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnvI; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnvpar; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply cnvdot; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply par11; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply A10; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply A13; apply: tm_eqv_eqv).
abstract (by repeat intro; simpl; apply A14; apply: tm_eqv_eqv).
Defined.
HB.instance Definition _ := tm_pttdom.
HB.instance Definition _ := Elabel.copy term [the pttdom of term].
Notation test := (test [the pttdom of term]).
(* TOTHINK: might want to move normalisation to completeness related files
also, the normal terms construction actually works in an arbitrary pttdom *)
(* normal terms *)
Inductive nterm :=
| nt_test: test -> nterm
| nt_conn: test -> term -> test -> nterm.
(* reading back terms *)
Definition term_of_nterm (t: nterm) :=
match t with
| nt_test alpha => elem_of alpha (* why do we need to insert the coercion??? *)
| nt_conn alpha u gamma => elem_of alpha · u · elem_of gamma
end.
(* pttdom algebra on normal terms *)
Definition nt_one := nt_test [1].
Definition nt_var a := nt_conn [1] (tm_var a) [1].
Definition nt_cnv u :=
match u with
| nt_test _ => u
| nt_conn a u b => nt_conn b (u°) a
end.
Definition nt_dom u :=
match u with
| nt_test _ => u
| nt_conn a u b => nt_test [elem_of a · dom (u·elem_of b)]
end.
Definition nt_dot u v :=
match u,v with
| nt_test a, nt_test b => nt_test [elem_of a·elem_of b]
| nt_test a, nt_conn b u c => nt_conn [elem_of a·elem_of b] u c
| nt_conn a u b, nt_test c => nt_conn a u [elem_of b·elem_of c]
| nt_conn a u b, nt_conn c v d => nt_conn a (u·elem_of b·elem_of c·v) d
end.
Definition nt_par u v :=
match u,v with
| nt_test a, nt_test b => nt_test [elem_of a·elem_of b]
| nt_test a, nt_conn b u c => nt_test [elem_of a ∥ elem_of b·u·elem_of c]
| nt_conn a u b, nt_test c => nt_test [elem_of c ∥ elem_of a·u·elem_of b]
| nt_conn a u b, nt_conn c v d => nt_conn [elem_of a·elem_of c] (u ∥ v) [elem_of b·elem_of d]
end.
(* normalisation function (Definition 7.1) *)
(* TODO: define it as an eval) *)
Fixpoint nt (u: term): nterm :=
match u with
| tm_dot u v => nt_dot (nt u) (nt v)
| tm_par u v => nt_par (nt u) (nt v)
| tm_cnv u => nt_cnv (nt u)
| tm_var a => nt_var a
| tm_dom u => nt_dom (nt u)
| tm_one => nt_one
end.
Induction on terms exposes tm_* constructors. The fold_ops
tactic recovers the notations for the term algebra
Ltac fold_ops :=
repeat match goal with
| |- context[tm_par ?u ?v] => change (tm_par u v) with (u ∥ v)
| |- context[tm_dot ?u ?v] => change (tm_dot u v) with (u · v)
| |- context[tm_cnv ?u] => change (tm_cnv u) with (u°)
| |- context[tm_dom ?u] => change (tm_dom u) with (dom u)
| |- context[tm_one ?A] => change (tm_one A) with one
| |- tm_eqv ?u ?v => change (u ≡ v)
end.
(* correctness of the normalisation function (Proposition 7.1) *)
Proposition nt_correct (u: term): u ≡ term_of_nterm (nt u).
Proof.
induction u=>//=; fold_ops.
- (* rewrite {1}IHu1 {1}IHu2. - coq 8.12 regression *)
rewrite (dot_eqv _ _ IHu1 _ _ IHu2).
case (nt u1) =>[a|a u b];
case (nt u2)=>[c|c v d] //=;
rewrite !dotA//.
- (* rewrite {1}IHu1 {1}IHu2. *)
rewrite (par_eqv _ _ IHu1 _ _ IHu2).
case (nt u1)=>[a|a u b];
case (nt u2)=>[c|c v d]=>//=.
exact: pardot.
apply: parC.
exact: par_nontest.
- rewrite {1}IHu.
case (nt u)=>[a|a v b]=>//=.
exact: cnvtst.
by rewrite 2!cnvdot dotA !cnvtst.
- rewrite {1}IHu.
case (nt u)=>[a|a v b]=>//=.
exact: domtst.
by rewrite -dotA A13 domtst.
- by rewrite dotx1 dot1x.
Qed.
End terms.
repeat match goal with
| |- context[tm_par ?u ?v] => change (tm_par u v) with (u ∥ v)
| |- context[tm_dot ?u ?v] => change (tm_dot u v) with (u · v)
| |- context[tm_cnv ?u] => change (tm_cnv u) with (u°)
| |- context[tm_dom ?u] => change (tm_dom u) with (dom u)
| |- context[tm_one ?A] => change (tm_one A) with one
| |- tm_eqv ?u ?v => change (u ≡ v)
end.
(* correctness of the normalisation function (Proposition 7.1) *)
Proposition nt_correct (u: term): u ≡ term_of_nterm (nt u).
Proof.
induction u=>//=; fold_ops.
- (* rewrite {1}IHu1 {1}IHu2. - coq 8.12 regression *)
rewrite (dot_eqv _ _ IHu1 _ _ IHu2).
case (nt u1) =>[a|a u b];
case (nt u2)=>[c|c v d] //=;
rewrite !dotA//.
- (* rewrite {1}IHu1 {1}IHu2. *)
rewrite (par_eqv _ _ IHu1 _ _ IHu2).
case (nt u1)=>[a|a u b];
case (nt u2)=>[c|c v d]=>//=.
exact: pardot.
apply: parC.
exact: par_nontest.
- rewrite {1}IHu.
case (nt u)=>[a|a v b]=>//=.
exact: cnvtst.
by rewrite 2!cnvdot dotA !cnvtst.
- rewrite {1}IHu.
case (nt u)=>[a|a v b]=>//=.
exact: domtst.
by rewrite -dotA A13 domtst.
- by rewrite dotx1 dot1x.
Qed.
End terms.