(* This program is free software; you can redistribute it and/or      *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1   *)
(* of the License, or (at your option) any later version.             *)
(*                                                                    *)
(* This program is distributed in the hope that it will be useful,    *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of     *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      *)
(* GNU Lesser General Public License for more details.                *)
(*                                                                    *)
(* You should have received a copy of the GNU Lesser General Public   *)
(* License along with this program; if not, write to the Free         *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA                                                     *)

Restriction of a code (only the keys of a message appears)

  • Key definitions: restrict_code
  • Initial author: Laurent.Thery@inria.fr (2003)

From Coq Require Import Sorting.Permutation.
From Huffman Require Export Code Frequency ISort UniqueKey PBTree2BTree.

Set Default Proof Using "Type".

Section Restrict.
Variable A : Type.
Variable empty : A.
Variable A_eq_dec : forall a b : A, {a = b} + {a <> b}.
Variable m : list A.

Restrict the code putting only codes of element in the frequency list
Definition restrict_code (m : list A) (c : code A) : code A :=
  map (fun x => (fst x, find_code A_eq_dec (fst x) c))
    (frequency_list A_eq_dec m).

The restriction has unique keys
Theorem restrict_code_unique_key :
 forall c : code A, unique_key (restrict_code m c).
Proof.
intros c; apply NoDup_unique_key.
unfold restrict_code in |- *.
replace
 (map (fst (B:=_))
    (map (fun x : A * nat => (fst x, find_code A_eq_dec (fst x) c))
       (frequency_list A_eq_dec m))) with
 (map (fst (B:=_)) (frequency_list A_eq_dec m)).
apply unique_key_NoDup; auto.
elim (frequency_list A_eq_dec m); simpl in |- *; auto with datatypes.
intros a l H; apply f_equal2 with (f := cons (A:=A)); auto.
Qed.

Doing the restriction does not change the codes
Theorem restrict_code_in :
 forall (a : A) (c : code A),
 In a m -> find_code A_eq_dec a c = find_code A_eq_dec a (restrict_code m c).
Proof.
intros a c H.
apply sym_equal; apply find_code_correct2; auto.
apply restrict_code_unique_key.
generalize (in_frequency_map _ A_eq_dec m a H).
unfold restrict_code in |- *; elim (frequency_list A_eq_dec m); simpl in |- *;
 auto with datatypes.
intros a0; case a0; simpl in |- *; auto with datatypes.
intros a1 n l H0 [H1| H1]; try rewrite H1; auto.
Qed.

The restriction does not change the encoding for messages in the same alphabet
Theorem restrict_code_encode_incl :
 forall (m1 : list A) (c : code A),
 incl m1 m -> encode A_eq_dec c m1 = encode A_eq_dec (restrict_code m c) m1.
Proof.
intros m1 c; elim m1; simpl in |- *; auto.
intros a l H H0.
apply f_equal2 with (f := app (A:=bool)); auto with datatypes.
apply restrict_code_in; auto with datatypes.
apply H; apply incl_tran with (2 := H0); auto with datatypes.
Qed.

The restriction does not change the encoding of the initial message
Theorem restrict_code_encode :
 forall c : code A, encode A_eq_dec c m = encode A_eq_dec (restrict_code m c) m.
Proof.
intros c; apply restrict_code_encode_incl; auto with datatypes.
Qed.

The restriction does not change the unique prefix property if the message is in the alphabet
Theorem restrict_unique_prefix :
 forall c : code A,
 not_null c ->
 in_alphabet m c -> unique_prefix c -> unique_prefix (restrict_code m c).
Proof.
intros c HH HH0 (HH1, HH2); split.
intros a1 a2 lb1 lb2 H0 H1 H2; apply HH1 with (lb1 := lb1) (lb2 := lb2); auto.
unfold restrict_code in H0.
case in_map_inv with (1 := H0).
intros x; case x; simpl in |- *.
intros a0 n (HP1, HP2).
rewrite HP2.
case (HH0 a0); auto.
apply frequency_list_in with (1 := HP1).
intros x0 H; rewrite find_code_correct2 with (2 := H); auto.
unfold restrict_code in H1.
case in_map_inv with (1 := H1).
intros x; case x; simpl in |- *.
intros a0 n (HP1, HP2).
rewrite HP2.
case (HH0 a0); auto.
apply frequency_list_in with (1 := HP1).
intros x0 H; rewrite find_code_correct2 with (2 := H); auto.
unfold restrict_code in |- *.
apply unique_key_map; auto.
Qed.

Restricting do not change the frequency list
Theorem frequency_list_restric_code_map :
 forall c,
 map (fst (B:=_)) (frequency_list A_eq_dec m) =
 map (fst (B:=_)) (restrict_code m c).
Proof.
intros c; unfold restrict_code in |- *; elim (frequency_list A_eq_dec m);
 simpl in |- *; auto.
intros a0 l H; apply f_equal2 with (f := cons (A:=A)); auto.
Qed.

If the message is not null, so is the restriction
Theorem restrict_not_null : forall c, m <> [] -> restrict_code m c <> [].
Proof.
case m; simpl in |- *; auto.
unfold restrict_code in |- *.
intros a0 l c H H1.
absurd
 (In
    ((fun x : A * nat => (fst x, find_code A_eq_dec (fst x) c))
       (a0, number_of_occurrences A_eq_dec a0 (a0 :: l))) []);
 auto with datatypes.
rewrite <- H1.
apply
 in_map with (f := fun x : A * nat => (fst x, find_code A_eq_dec (fst x) c)).
apply frequency_number_of_occurrences; auto with datatypes.
Qed.

The leaves of the build tree from the restrict code are the keys of the frequency list
Theorem restrict_code_pbbuild :
 forall c : code A,
 not_null c ->
 unique_prefix c ->
 in_alphabet m c ->
 m <> [] ->
 Permutation (map fst (frequency_list A_eq_dec m))
   (all_pbleaves (pbbuild empty (restrict_code m c))).
Proof.
intros c H H0 H1 H2.
rewrite frequency_list_restric_code_map with (c := c).
apply all_pbleaves_pbbuild; auto.
apply restrict_not_null; auto.
apply restrict_unique_prefix; auto.
Qed.

End Restrict.

Arguments restrict_code [A].