Library hydras.Ackermann.wConsistent
From hydras.Ackermann Require Import folProof folProp LNN.
From Coq Require Import Arith List.
Import NNnotations.
Definition wConsistent (T : System) :=
∀ (f : Formula) (v : nat),
(∀ x : nat, In x (freeVarF f) → v = x) →
SysPrf T (existH v (notH f)) →
∃ n : nat, ¬ SysPrf T (substF f v (natToTerm n)).
Lemma wCon2Con : ∀ T : System, wConsistent T → Consistent LNN T.
Definition wInconsistent (T : System) :=
∃ f : Formula,
(∃ v : nat,
(∀ x : nat, In x (freeVarF f) → v = x) ∧
SysPrf T (existH v (notH f)) ∧
(∀ n : nat, SysPrf T (substF f v (natToTerm n)))).
Lemma notCon2wNotCon :
∀ T : System, Inconsistent LNN T → wInconsistent T.
From Coq Require Import Arith List.
Import NNnotations.
Definition wConsistent (T : System) :=
∀ (f : Formula) (v : nat),
(∀ x : nat, In x (freeVarF f) → v = x) →
SysPrf T (existH v (notH f)) →
∃ n : nat, ¬ SysPrf T (substF f v (natToTerm n)).
Lemma wCon2Con : ∀ T : System, wConsistent T → Consistent LNN T.
Definition wInconsistent (T : System) :=
∃ f : Formula,
(∃ v : nat,
(∀ x : nat, In x (freeVarF f) → v = x) ∧
SysPrf T (existH v (notH f)) ∧
(∀ n : nat, SysPrf T (substF f v (natToTerm n)))).
Lemma notCon2wNotCon :
∀ T : System, Inconsistent LNN T → wInconsistent T.