Library hydras.solutions_exercises.schutte_cnf_counter_example
From hydras Require Import Schutte AP CNF.
From Coq Require Import List.
Open Scope schutte_scope.
Section Cter_example.
Hypothesis cnf_lt_epsilon0_iff :
∀ l alpha,
is_cnf_of alpha l →
(alpha < epsilon0 ↔ Forall (fun beta ⇒ beta < alpha) l).
Let alpha := phi0 (succ epsilon0).
Let l := succ epsilon0 :: nil.
Remark R1 : epsilon0 < alpha.
Remark R2 : is_cnf_of alpha l.
Remark R3 : Forall (fun beta ⇒ beta < alpha) l.
Lemma counter_ex : False.
End Cter_example.
From Coq Require Import List.
Open Scope schutte_scope.
Section Cter_example.
Hypothesis cnf_lt_epsilon0_iff :
∀ l alpha,
is_cnf_of alpha l →
(alpha < epsilon0 ↔ Forall (fun beta ⇒ beta < alpha) l).
Let alpha := phi0 (succ epsilon0).
Let l := succ epsilon0 :: nil.
Remark R1 : epsilon0 < alpha.
Remark R2 : is_cnf_of alpha l.
Remark R3 : Forall (fun beta ⇒ beta < alpha) l.
Lemma counter_ex : False.
End Cter_example.