(* Authors: Christian Doczkal and Jan-Oliver Kaiser *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect.
Require Import misc languages.
Set Implicit Arguments.
Unset Printing Implicit Defensive.
Unset Strict Implicit.
Section FA.
Variable char : finType.
Local Notation word := (word char).
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect.
Require Import misc languages.
Set Implicit Arguments.
Unset Printing Implicit Defensive.
Unset Strict Implicit.
Section FA.
Variable char : finType.
Local Notation word := (word char).
Record dfa : Type := {
dfa_state :> finType;
dfa_s : dfa_state;
dfa_fin : {set dfa_state};
dfa_trans : dfa_state -> char -> dfa_state }.
(* Arguments dfa_fin d _ : clear implicits. *)
We define acceptance for every state of a DFA. The language of a
DFA is then just the language of the starting state.
Section DFA_Acceptance.
Variable A : dfa.
Implicit Types (p q : A) (x y : word).
Fixpoint delta (p : A) x :=
if x is a :: x' then delta (dfa_trans p a) x' else p.
Lemma delta_cons p a x : delta (dfa_trans p a) x = delta p (a :: x).
Proof. by []. Qed.
Lemma delta_cat p x y : delta p (x ++ y) = delta (delta p x) y.
Proof. elim: x p => // a x /= IH p. by rewrite IH. Qed.
Definition dfa_accept (p : A) x := delta p x \in dfa_fin A.
Definition delta_s w := delta (dfa_s A) w.
Definition dfa_lang := [pred x | dfa_accept (dfa_s A) x].
Lemma accept_nil p : dfa_accept p [::] = (p \in dfa_fin A).
Proof. by []. Qed.
Lemma accept_cons (x : A) a w :
dfa_accept x (a :: w) = dfa_accept (dfa_trans x a) w.
Proof. by []. Qed.
Lemma delta_lang x : (delta_s x \in dfa_fin A) = (x \in dfa_lang).
Proof. by []. Qed.
Definition accE := (accept_nil,accept_cons).
End DFA_Acceptance.
Regularity
Definition regular (L : lang char) := { A : dfa | forall x, L x <-> x \in dfa_lang A }.
Lemma regular_ext L1 L2 : regular L2 -> L1 =p L2 -> regular L1.
Proof. case => A HA B. exists A => w. by rewrite B. Qed.
Operations on DFAs
Definition dfa_void :=
{| dfa_s := tt; dfa_fin := set0 ; dfa_trans x a := tt |}.
Lemma dfa_void_correct (x: dfa_void) w: ~~ dfa_accept x w.
Proof. by rewrite /dfa_accept inE. Qed.
Section DFAOps.
Variable op : bool -> bool -> bool.
Variable A1 A2 : dfa.
Complement automaton
Definition dfa_compl :=
{| dfa_s := dfa_s A1;
dfa_fin := ~: (dfa_fin A1);
dfa_trans := (@dfa_trans A1) |}.
Lemma dfa_compl_correct w :
w \in dfa_lang dfa_compl = (w \notin dfa_lang A1).
Proof.
rewrite /dfa_lang !inE {2}/dfa_compl /=.
by rewrite /dfa_accept inE.
Qed.
{| dfa_s := dfa_s A1;
dfa_fin := ~: (dfa_fin A1);
dfa_trans := (@dfa_trans A1) |}.
Lemma dfa_compl_correct w :
w \in dfa_lang dfa_compl = (w \notin dfa_lang A1).
Proof.
rewrite /dfa_lang !inE {2}/dfa_compl /=.
by rewrite /dfa_accept inE.
Qed.
BinOp Automaton
Definition dfa_op :=
{| dfa_s := (dfa_s A1, dfa_s A2);
dfa_fin := [set q | op (q.1 \in dfa_fin A1) (q.2 \in dfa_fin A2)];
dfa_trans x a := (dfa_trans x.1 a, dfa_trans x.2 a) |}.
Lemma dfa_op_correct w :
w \in dfa_lang dfa_op = op (w \in dfa_lang A1) (w \in dfa_lang A2).
Proof.
rewrite !inE {2}/dfa_op /=.
elim: w (dfa_s A1) (dfa_s A2) => [| a w IHw] x y; by rewrite !accE ?inE /=.
Qed.
Definition dfa0 := {| dfa_s := tt; dfa_trans q a := tt; dfa_fin := set0 |}.
Lemma dfa0_correct x : x \in dfa_lang dfa0 = false.
Proof. by rewrite -delta_lang inE. Qed.
End DFAOps.
Lemma regular_inter (L1 L2 : lang char) :
regular L1 -> regular L2 -> regular (fun x => L1 x /\ L2 x).
Proof.
move => [A LA] [B LB]. exists (dfa_op andb A B) => x.
by rewrite dfa_op_correct LA LB (rwP andP).
Qed.
Lemma regular0 : regular (fun _ : word => False).
Proof. exists (dfa0) => x. by rewrite dfa0_correct. Qed.
Lemma regularU (L1 L2 : lang char) :
regular L1 -> regular L2 -> regular (fun x => L1 x \/ L2 x).
Proof.
move => [A1 acc_L1] [A2 acc_L2]. exists (dfa_op orb A1 A2) => x.
by rewrite dfa_op_correct -(rwP orP) -acc_L1 -acc_L2.
Qed.
Lemma regular_bigU (T : eqType) (L : T -> lang char) (s : seq T) :
(forall a, a \in s -> regular (L a)) -> regular (fun x => exists2 a, a \in s & L a x).
Proof.
elim: s => //.
- move => _. apply: regular_ext regular0 _. by split => // [[a]].
- move => a s IH /all1sT [H1 H2].
pose L' := (fun x => L a x \/ (fun x : word => exists2 a : T, a \in s & L a x) x).
apply: (regular_ext (L2 := L')); first by apply: regularU => //; exact: IH.
move => x. rewrite /L'. exact: ex1s.
Qed.
Section CutOff.
Variables (aT rT : finType) (f : seq aT -> rT).
Hypothesis RC_f : forall x y a, f x = f y -> f (x++[::a]) = f (y++[::a]).
Lemma RC_seq x y z : f x = f y -> f (x++z) = f (y++z).
Proof.
elim: z x y => [|a z IHz] x y; first by rewrite !cats0.
rewrite -(cat1s a) (catA x [::a]) (catA y [::a]). move/(RC_f a). exact: IHz.
Qed.
Lemma RC_rep x (i j : 'I_(size x)) :
i < j -> f (take i x) = f (take j x) -> f (take i x ++ drop j x) = f x.
Proof. move => Hij Hfij. rewrite -{5}(cat_take_drop j x). exact: RC_seq. Qed.
Definition exseqb (p : pred rT) :=
[exists n : 'I_#|rT|.+1, exists x : n.-tuple aT, p (f x)].
Lemma exseqP (p : pred rT) : reflect (exists x, p (f x)) (exseqb p).
Proof.
apply: (iffP idP); last case.
- case/existsP => n. case/existsP => x Hx. by exists x.
- apply: (size_induction (measure := size)) => x IHx px.
case H: (size x < #|rT|.+1).
+ apply/existsP. exists (Ordinal H). apply/existsP. by exists (in_tuple x).
+ have: ~ injective (fun i : 'I_(size x) => f (take i x)).
{ move/card_leq_inj. by rewrite -ltnS /= card_ord H. }
move/injectiveP/injectivePn => [i [j]] Hij.
wlog ltn_ij : i j {Hij} / i < j => [W|] E.
{ move: Hij. rewrite neq_ltn. case/orP => l; exact: W l _. }
apply: (IHx (take i x ++ drop j x)); last by rewrite RC_rep.
by rewrite size_cat size_take size_drop ltn_ord -ltn_subRL ltn_sub2l.
Qed.
Lemma exseq_dec (p : pred rT) : decidable (exists x, p (f x)).
Proof. apply: decP. exact: exseqP. Qed.
Lemma allseq_dec (p : pred rT) : decidable (forall x, p (f x)).
Proof.
case: (exseq_dec (predC p)) => H;[right|left].
- move => A. case: H => [x /= Hx]. by rewrite A in Hx.
- move => x. apply/negPn/negP => C. apply: H. by exists x.
Qed.
Construction of Image
Definition image_type := { a : rT | exseq_dec (pred1 a) }.
Lemma image_fun_proof (x : seq aT) : exseq_dec (pred1 (f x)).
Proof. apply/dec_eq. by exists x => /=. Qed.
Definition image_fun (x : seq aT) : image_type := Sub (f x) (image_fun_proof x).
Lemma surjective_image_fun : surjective (image_fun).
Proof. move => [y Py]. case/dec_eq : (Py) => /= x ?. by exists x. Qed.
End CutOff.
Decidability of Language Equivalence
Section Emptyness.
Variable A : dfa.
Lemma delta_rc x y a : let s := dfa_s A in
delta s x = delta s y -> delta s (x ++ [::a]) = delta s (y ++ [::a]).
Proof. by rewrite /= !delta_cat => <-. Qed.
Definition dfa_inhab : decidable (exists x, x \in dfa_lang A) :=
exseq_dec delta_rc (fun x => x \in dfa_fin A).
Lemma dfa_inhabP : reflect (exists x, x \in dfa_lang A) (dfa_inhab).
Proof. apply: (iffP idP); by rewrite dec_eq. Qed.
Definition dfa_empty := allseq_dec delta_rc (fun x => x \notin dfa_fin A).
Lemma dfa_emptyP : reflect (dfa_lang A =i pred0) (dfa_empty).
Proof.
apply: (iffP idP) => [/dec_eq H x|H]; first by rewrite inE /dfa_accept (negbTE (H _)).
apply/dec_eq => x. by rewrite -[_ \notin _]/(x \notin dfa_lang A) H.
Qed.
End Emptyness.
The problem of deciding language eqivalence reduces to the problem
of deciding emptiness of A [+] B
Definition dfa_equiv A1 A2 := dfa_empty (dfa_op addb A1 A2).
Lemma dfa_equiv_correct A1 A2 :
reflect (dfa_lang A1 =i dfa_lang A2) (dfa_equiv A1 A2).
Proof.
apply: (iffP (dfa_emptyP _)) => H w.
- move/negbT: (H w). rewrite !dfa_op_correct -addNb.
move/addbP. by rewrite negbK.
- apply/negbTE. by rewrite !dfa_op_correct H addbb.
Qed.
Definition dfa_incl A1 A2 := dfa_empty (dfa_op (fun a b => a && ~~ b) A1 A2).
Lemma dfa_incl_correct A1 A2 :
reflect {subset dfa_lang A1 <= dfa_lang A2} (dfa_incl A1 A2).
Proof.
apply: (iffP (dfa_emptyP _)) => H w.
- move/negbT: (H w). rewrite dfa_op_correct -negb_imply negbK.
by move/implyP.
- rewrite dfa_op_correct -negb_imply. apply/negbTE. rewrite negbK.
apply/implyP. exact: H.
Qed.
End FA.
Section Preimage.
Variables (char char' : finType).
Variable (h : word char -> word char').
Hypothesis h_hom : homomorphism h.
Definition dfa_preim (A : dfa char') : dfa char :=
{| dfa_s := dfa_s A;
dfa_fin := dfa_fin A;
dfa_trans x a := delta x (h [:: a]) |}.
Lemma dfa_preimP A : dfa_lang (dfa_preim A) =i preim h (dfa_lang A).
Proof.
move => w. rewrite !inE /dfa_accept /dfa_preim /=.
elim: w (dfa_s A) => [|a w IHw] x /= ; first by rewrite h0.
by rewrite -[a :: w]cat1s h_hom !delta_cat -IHw.
Qed.
End Preimage.
Lemma preim_regular (char char' : finType) (h : word char -> word char') L :
homomorphism h -> regular L -> regular (preimage h L).
Proof.
move => hom_h [A HA]. exists (dfa_preim h A) => w.
by rewrite dfa_preimP // unfold_in /= -HA.
Qed.
Section RightQuotient.
Variables (char: finType) (L1 L2 : lang char).
Definition quotR := fun x => exists2 y, L2 y & L1 (x++y).
Variable (A : dfa char).
Hypothesis acc_L1 : dfa_lang A =p L1.
Hypothesis dec_L2 : forall (q:A), decidable (exists2 y, L2 y & delta q y \in dfa_fin A).
It would be better to not make the DFA explicit and require
decidabiliy of (exists2 y, L2 y & L1 (x ++ y)) but that would
require a connected DFA in order to define the final states via
canonical words
Definition dfa_quot :=
{| dfa_s := dfa_s A;
dfa_trans := @dfa_trans _ A;
dfa_fin := [set q | dec_L2 q] |}.
Lemma dfa_quotP x : reflect (quotR x) (x \in dfa_lang dfa_quot).
Proof.
apply: (iffP idP).
- rewrite inE /dfa_accept inE. case/dec_eq => y inL2.
rewrite -delta_cat => H. exists y => //. by rewrite -acc_L1.
- case => y y1 y2. rewrite inE /dfa_accept inE /= dec_eq.
exists y => //. by rewrite -delta_cat acc_L1.
Qed.
End RightQuotient.
Useful special case of the right-quotient construction. Other
special cases would be where L2 is context free, the case for
arbitrary L2 is non-constructive.
Lemma regular_quotR (char : finType) (L1 L2 : lang char) :
regular L1 -> regular L2 -> regular (quotR L1 L2).
Proof.
move => [A LA] reg2.
suff dec_L1 q : decidable (exists2 y, L2 y & delta q y \in dfa_fin A).
{ exists (dfa_quot dec_L1) => x. apply: (rwP (dfa_quotP _ _ _)) => {x} x. by rewrite LA. }
case: reg2 => {LA} [B LB].
pose C := {| dfa_s := q ; dfa_fin := dfa_fin A ; dfa_trans := @dfa_trans _ A |}.
pose dec := dfa_inhab (dfa_op andb B C).
apply: (dec_iff dec); split.
- move => [x X1 X2]. exists x. rewrite dfa_op_correct. apply/andP;split => //. exact/LB.
- move => [x]. rewrite dfa_op_correct. case/andP => *. exists x => //. exact/LB.
Qed.
Section LeftQuotient.
Variables (char: finType) (L1 L2 : lang char).
Definition quotL := fun y => exists2 x, L1 x & L2 (x++y).
Variable (A : dfa char).
Hypothesis acc_L2 : L2 =p dfa_lang A.
Hypothesis dec_L1 : forall (q:A), decidable (exists2 y, L1 y & delta_s A y = q).
Let A_start q := {| dfa_s := q; dfa_fin := dfa_fin A; dfa_trans := @dfa_trans _ A |}.
Lemma A_start_cat x y : (x ++ y \in dfa_lang A) = (y \in dfa_lang (A_start (delta_s A x))).
Proof. rewrite inE /delta_s. elim: x (dfa_s A)=> //= a x IH q. by rewrite accE IH. Qed.
Lemma regular_quotL_aux : regular quotL.
Proof.
pose S := [seq q | q <- enum A & dec_L1 q].
pose L (q:A) := mem (dfa_lang (A_start q)).
pose R x := exists2 a, a \in S & L a x.
suff: quotL =p R.
{ apply: regular_ext. apply: regular_bigU => q qS. by exists (A_start q). }
move => y; split.
- case => x H1 /acc_L2 H2. exists (delta_s A x).
+ apply/mapP. exists (delta_s A x) => //. rewrite mem_filter mem_enum inE andbT.
apply/dec_eq. by exists x.
+ by rewrite /L topredE -A_start_cat.
- case => ? /mapP [q]. rewrite mem_filter mem_enum inE andbT => /dec_eq [x L1_x <- ->].
rewrite /L topredE -A_start_cat => Hxy. exists x => //. exact/acc_L2.
Qed.
End LeftQuotient.
Lemma regular_quotL (char: finType) (L1 L2 : lang char) :
regular L1 -> regular L2 -> regular (quotL L1 L2).
Proof.
move => [A acc_L1] [B acc_L2]. apply: regular_quotL_aux acc_L2 _ => q.
pose B_q := {| dfa_s := dfa_s B; dfa_fin := [set q] ; dfa_trans := @dfa_trans _ B |}.
have B_qP y : delta_s B y = q <-> y \in dfa_lang B_q.
{ rewrite -delta_lang inE. by split => ?; exact/eqP. }
pose dec := dfa_inhab (dfa_op andb A B_q).
apply: dec_iff dec _. split.
- move => [y] H1 Hq. exists y. rewrite dfa_op_correct.
apply/andP;split; first exact/acc_L1. exact/B_qP.
- move => [y]. rewrite dfa_op_correct => /andP [H1 H2]. exists y; first exact/acc_L1.
exact/B_qP.
Qed.
regular languages are logically determined and since propositions
can be embedded into languages, there are some languages that are regular
iff we assume excluded middle. (take P to be any independent proposition)
Lemma regular_det (char : finType) L (w : word char):
inhabited (regular L) -> (L w) \/ (~ L w).
Proof. case. case => A ->. by case: (w \in dfa_lang A); [left|right]. Qed.
Lemma regular_xm (char : finType) :
(forall P, inhabited (regular (fun _ : word char => P))) <-> (forall P, P \/ ~ P).
Proof.
split => [H|H] P ; first exact: regular_det [::] (H P).
case: (H P) => HP; constructor.
+ exists (dfa_compl (dfa_void char)) => x. by rewrite dfa_compl_correct dfa_void_correct.
+ exists (dfa_void char) => w. by rewrite /dfa_lang inE (negbTE (dfa_void_correct _ _)).
Qed.
Section NonRegular.
Variables (char : finType) .
Implicit Types (L : lang char).
Definition residual L x := fun y => L (x ++ y).
Lemma residualP (f : nat -> word char) (L : lang char) :
(forall n1 n2, residual L (f n1) =p residual L (f n2) -> n1 = n2) ->
~ inhabited (regular L).
Proof.
move => f_spec [[A E]].
pose f' (n : 'I_#|A|.+1) := delta_s A (f n).
suff: injective f' by move/card_leq_inj ; rewrite card_ord ltnn.
move => [n1 H1] [n2 H2]. rewrite /f' /delta_s /= => H.
apply/eqP; change (n1 == n2); apply/eqP. apply: f_spec => w.
by rewrite /residual !E !inE /dfa_accept !delta_cat H.
Qed.
Hypothesis (a b : char) (Hab : a != b).
Definition Lab w := exists n, w = nseq n a ++ nseq n b.
Lemma count_nseq (T : eqType) (c d : T) n :
count (pred1 c) (nseq n d) = (c == d) * n.
Proof.
elim: n => [|n] /=; first by rewrite muln0.
rewrite [d == c]eq_sym. by case e: (c == d) => /= ->.
Qed.
Lemma countL n1 n2 : count (pred1 a) (nseq n1 a ++ nseq n2 b) = n1.
Proof. by rewrite count_cat !count_nseq (negbTE Hab) eqxx //= mul1n mul0n addn0. Qed.
Lemma countR n1 n2 : count (pred1 b) (nseq n1 a ++ nseq n2 b) = n2.
Proof. by rewrite count_cat !count_nseq eq_sym (negbTE Hab) eqxx //= mul1n mul0n. Qed.
Lemma Lab_eq n1 n2 : Lab (nseq n1 a ++ nseq n2 b) -> n1 = n2.
Proof.
move => [n H].
by rewrite -[n1](countL _ n2) -{2}[n2](countR n1 n2) H countL countR.
Qed.
Lemma Lab_not_regular : ~ inhabited (regular Lab).
Proof.
pose f n := nseq n a.
apply: (@residualP f) => n1 n2. move/(_ (nseq n2 b)) => H.
apply: Lab_eq. apply/H. by exists n2.
Qed.
End NonRegular.
Section Pumping.
Definition sub (T:eqType) i j (s : seq T) := take (j-i) (drop i s).
Definition rep (T : eqType) (s : seq T) n := iter n (cat s) [::].
Variable char : finType.
Lemma delta_rep (A : dfa char) (p : A) x i : delta p x = p -> delta p (rep x i) = p.
Proof. elim: i => //= i IH H. by rewrite delta_cat H IH. Qed.
Lemma pump_dfa (A : dfa char) x y z :
x ++ y ++ z \in dfa_lang A -> #|A| < size y ->
exists u v w,
[/\ ~~ nilp v, y = u ++ v ++ w & forall i, (x ++ u ++ rep v i ++ w ++ z) \in dfa_lang A].
Proof.
rewrite -delta_lang => H1 H2.
have/injectivePn : ~~ injectiveb (fun i : 'I_(size y) => delta (delta_s A x) (take i y)).
apply: contraL H2 => /injectiveP/card_leq_inj. by rewrite leqNgt card_ord.
move => [i] [j] ij fij.
wlog {ij} ij : i j fij / i < j. rewrite neq_ltn in ij. case/orP : ij => ij W; exact: W _ ij.
exists (take i y). exists (sub i j y). exists (drop j y). split => [||k].
- apply: contraL ij.
by rewrite /nilp size_take size_drop ltn_sub2r ?ltn_ord // subn_eq0 leqNgt.
- by rewrite catA -take_addn subnKC 1?ltnW // cat_take_drop.
- rewrite inE /dfa_accept !delta_cat delta_rep.
by rewrite fij -!delta_cat !catA -[(x ++ _) ++ _]catA cat_take_drop -!catA.
rewrite -delta_cat -take_addn subnKC //. exact: ltnW.
Qed.
Lemma pumping (L : word char -> Prop) :
(forall k, exists x y z, k <= size y /\ L (x ++ y ++ z) /\
(forall u v w, y = u ++ v ++ w -> ~~ nilp v ->
exists i, L (x ++ u ++ rep v i ++ w ++ z) -> False))
-> ~ inhabited (regular L).
Proof.
move => H [[A LA]].
move/(_ #|A|.+1) : H => [x] [y] [z] [size_y [/LA Lxyz]].
move: (pump_dfa Lxyz size_y) => [u] [v] [w] [Hn Hy Hv] /(_ u v w Hy Hn).
move => [i]. apply. exact/LA.
Qed.
Lemma cat_nseq_eq n1 n2 (a : char) :
nseq n1 a ++ nseq n2 a = nseq (n1+n2) a.
Proof. elim: n1 => [|n1 IHn1] //=. by rewrite -cat1s IHn1. Qed.
Example pump_Lab (a b : char) : a != b -> ~ inhabited (regular (Lab a b)).
Proof.
move => neq. apply: pumping => k.
exists [::]. exists (nseq k a). exists (nseq k b). repeat split.
- by rewrite size_nseq.
- by exists k.
- move => u [|c v] w // /eqP e _. exists 0 => /= H.
have Hk: k = size (u ++ (c::v) ++ w) by rewrite -[k](@size_nseq _ _ a) (eqP e).
rewrite Hk !size_cat -!cat_nseq_eq !eqseq_cat ?size_nseq // in e.
case/and3P : e => [/eqP Hu /eqP Hv /eqP Hw].
rewrite -Hu -Hw catA cat_nseq_eq in H. move/(Lab_eq neq) : H.
move/eqP. by rewrite Hk !size_cat eqn_add2l -{1}[size w]add0n eqn_add2r.
Qed.
End Pumping.