From HB Require Import structures.
Require Import Setoid Morphisms.
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries bij equiv.
Require Import setoid_bigop structures pttdom mgraph mgraph2 rewriting.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".

Reducibility for the rewrite system

Preliminary isomorphisms (on arbitrary graphs)

Section prelim.
Variable (Lv : comMonoid) (Le : elabelType).
Notation graph := (graph Lv Le).
Notation graph2 := (graph2 Lv Le).
Local Open Scope cm_scope.

Lemma two_edges (a b c d: Lv) (u v: Le):
  edge_graph a u b edge_graph c v d
(two_graph a b two_graph c d)
   [inl (inl tt), u, inl (inr tt)]
   [inr (inl tt), v, inr (inr tt)].
Proof.
  etransitivity. apply (union_add_edge_l _ _ _ _).
  etransitivity. apply (add_edge_iso (union_add_edge_r _ _ _ _) _ _ _).
  apply add_edge_C.
Defined.

Definition two_option_void:
  bij (option (void+void) + option (void+void)) (option (option ((void+void)+void))).
Proof.
  etransitivity. apply sum_option_r. apply option_bij.
  etransitivity. apply sum_bij. reflexivity. apply sumxU.
  etransitivity. apply sumxU. apply option_bij.
  symmetry. apply sumxU.
Defined.

Lemma dot_edges (a b c d: Lv) (u v: Le):
  point (merge_seq (edge_graph a u b edge_graph c v d) [:: (inl (inr tt), inr (inl tt))])
        (\pi inl (inl tt)) (\pi (inr (inr tt)))
≃2 two_graph2 a d (bc) [inl (inl tt), u, inr tt] [inr tt, v, inl (inr tt)].
Proof.
  set G := (_ _)%G.
  set H := (_ [_, _, _] [_,_,_])%G2.
  pose f (x : G) : H := match x with
        | inl (inl _) => inl (inl tt)
        | inr (inr _) => inl (inr tt)
        | _ => inr tt
        end.
  unshelve Iso2
  (@merge_surj _ _ G _ H f
     (fun x =>
        match x with
        | inl (inl _) => inl (inl tt)
        | inl (inr _) => inr (inr tt)
        | inr tt => inl (inr tt)
        end)
     (two_option_void)
     xpred0 _ _ _).
  4,5: apply merge_surjE.
  - apply kernel_eqv_clot.
    * by repeat constructor.
    * case=>[[[]|[]]|[[]|[]]]; case=>[[[]|[]]|[[]|[]]]//= _; eqv.
  - by repeat case.
  - split.
    + by repeat case.
    + move => y. rewrite !big_sumType !big_unitType.
      by case: y ; [case; case | case]; rewrite /= ?monUl ?monU.
    + by repeat case.
Qed.

Definition two_option_void': bij (option (void+void) + option (void+void)) (option (option (void+void))).
Proof.
  etransitivity. apply sum_option_r. apply option_bij.
  etransitivity. apply sum_bij. reflexivity. apply sumxU.
  apply sumxU.
Defined.

Lemma par_edges (a b c d: Lv) (u v: Le):
  point (merge_seq (edge_graph a u b edge_graph c v d)
                   [:: (inl (inl tt), inr (inl tt)); (inl (inr tt), inr (inr tt))])
        (\pi inl (inl tt)) (\pi (inr (inr tt)))
≃2 two_graph2 (ac) (bd) [inl tt, u, inr tt] [inl tt, v, inr tt].
Proof.
  unshelve Iso2
  (@merge_surj _ _
     (edge_graph a u b edge_graph c v d) _
     (two_graph2 (ac) (bd) [_, u, _] [_, v, _])
     (fun x =>
        match x with
        | inl y => y
        | inr y => y
        end)
     (inl)
     (two_option_void')
     xpred0 _ _ _ ).
  4,5: apply merge_surjE.
  - apply kernel_eqv_clot.
    * by repeat constructor.
    * case=>[[[]|[]]|[[]|[]]]; case=>[[[]|[]]|[[]|[]]]//= _; eqv.
  - by repeat case.
  - split.
    + by repeat case.
    + move => y. rewrite !big_sumType !big_unitType.
      by case: y => [[]|[]] /=; rewrite ?monU ?monUl.
    + by repeat case.
Qed.

End prelim.

preservation of steps under algebraic operations

(* (for every pttdom algebra) *)
Section s.
Variable X: pttdom.
Notation test := (test X).
Notation graph := (graph test X).
Notation graph2 := (graph2 test X).
Notation step := (@step X).
Notation steps := (@steps X).

(* preliminaries to obtain the technical Lemma 6.3 *)

Definition mentions (A: eqType) (l: pairs A) :=
  flatten [seq [::x.1;x.2] | x <- l].

Definition admissible_l (G: graph2) (H: eqType) (e : pairs (G+H)) :=
  all (fun x => if x is inl z then z \in IO else true) (mentions e).

Definition replace_ioL (G G': graph2) (H: eqType) (e : pairs (G+H)) : pairs (G'+H) :=
  map_pairs (fun x =>
               match x with
               | inl z => if z == output then inl output else inl input
               | inr z => inr z
               end) e.
Arguments replace_ioL [G G' H].

Lemma replace_ioE vT eT1 eT2 st1 st2 lv1 lv2 le1 le2 i o H e : admissible_l e ->
   @replace_ioL (point (@Graph _ _ vT eT1 st1 lv1 le1) i o)
                (point (@Graph _ _ vT eT2 st2 lv2 le2) i o) H e = e.
Proof.
  elim: e => //=. case => [[a|a] [b|b]] l /= IH.
  all: rewrite /admissible_l /=. all: first [case/and3P|case/andP|idtac].
  all: repeat (case/set2P => ->). all: move => HA; rewrite ?IH ?eqxx //.
  all: by case: (altP (i =P o)) => [->|?].
Qed.

Lemma cons_iso_steps G G' H : steps G' H -> G ≃2 G' -> steps G H.
Proof. intros E F. etransitivity. apply iso_step, F. assumption. Qed.

Lemma cons_step_steps G G' H : steps G' H -> step G G' -> steps G H.
Proof. intros E F. by setoid_rewrite F. Qed.

Lemma merge_add_edgeL (G H : graph) x y u l i o :
   point (merge_seq (G [x,u,y] H) l) (\pi i) (\pi o)
≃2 point (merge_seq (G H) l) (\pi i) (\pi o) [\pi inl x,u,\pi inl y].
Proof.
  eapply iso2_comp.
  apply (iso_iso2' (h:=merge_iso (union_add_edge_l _ _ _ _) _)).
  1,2: by rewrite merge_isoE.
  eapply iso2_comp.
  refine (iso_iso2' (h:=merge_add_edge _ _ _ _) _ _).
  1,2: by rewrite merge_add_edgeE.
  unshelve refine (iso_iso2' (h:=add_edge_iso'' (h:=mgraph.merge_same _) _ _ _) _ _)=>/=.
  4: reflexivity.
  by rewrite map_pairs_id.
  all: by rewrite merge_sameE.
Defined.

(* TOFIX: even with Opaque merge_iso h_merge, the rewrite merge_add_edgeE 
   succeeds by unfolding if we don't do the rewrite merge_isoE first. *)

Lemma merge_add_edgeLE G H x y u l i o z:
  @merge_add_edgeL G H x y u l i o (\pi z) = (\pi z).
Proof.
  rewrite /merge_add_edgeL/=.
  rewrite (@merge_isoE _ _ _ _ (union_add_edge_l H x u y) l).
  rewrite merge_add_edgeE.
  by rewrite merge_sameE.
Qed.

Section a.
Variables (G H : graph2) (a: test) (l: pairs (add_vertex2 G a H)%G).
Hypothesis A: admissible_l l.
Lemma admissible_map :
  map_pairs sumA (map_pairs (sumf id sumC) (map_pairs sumA' l)) =
  map_pairs inl (replace_ioL l).
Proof.
  rewrite 2!map_map_pairs. induction l as [|[a1 a2] q IH]=>//.
  simpl. move: A =>/andP[/=A1 /andP[/=A2 Q]]. f_equal. f_equal.
  destruct a1 as [[x|[]]|x]=>//=.
  case/set2P : A1 => [] [->]; rewrite sum_eqE ?eqxx //. by case: (altP (input =P output)) => [->|].
  exfalso. clear -A1. by rewrite !inE in A1.
  destruct a2 as [[x|[]]|x]=>//=.
  case/set2P : A2 => [] [->]; rewrite sum_eqE ?eqxx //. by case: (altP (input =P output)) => [->|].
  exfalso. clear -A2. by rewrite !inE in A2.
  apply IH, Q.
Qed.

Lemma merge_add_vertexL:
   point (merge_seq (G a H) l) (\pi (inl (inl input))) (\pi (unr output))
≃2 point (merge_seq (G H) (replace_ioL l)) (\pi (unl input)) (\pi (unr output)) a.
Proof.
  eapply iso2_comp.
  apply (iso_iso2' (h:=merge_iso (iso_sym (union_A _ _ _)) _)).
  1,2: rewrite merge_isoE//.
  eapply iso2_comp.
  refine (iso_iso2' (h:=merge_iso (union_iso iso_id (union_C _ _)) _) _ _).
  1,2: rewrite merge_isoE//.
  eapply iso2_comp.
  refine (iso_iso2' (h:=merge_iso (union_A _ _ _) _) _ _).
  1,2: rewrite merge_isoE//.
  eapply iso2_sym.
  eapply iso2_comp.
  refine (iso_iso2' (h:=union_merge_l _ _) _ _).
  1,2: rewrite union_merge_lEl//.
  eapply iso2_sym. (* just so that merge_add_vertexLE gets easier below... *)
  apply merge_same'.
  by rewrite admissible_map.
Defined.

Lemma merge_add_vertexLE x:
  merge_add_vertexL (\pi (inl x)) =
  match x with inl x => inl (\pi inl x) | _ => inr tt end.
Proof.
  simpl.
  rewrite (@merge_isoE _ _ _ _ (iso_sym (union_A G (unit_graph a) H)) l).
  rewrite (@merge_isoE _ _ _ _ (union_iso iso_id (union_C (unit_graph a) H)) _).
  rewrite (@merge_isoE _ _ _ _ (union_A G H (unit_graph a)) _).
  rewrite merge_same'E.
  rewrite union_merge_lE'.
  by case x=>[y|[]].
Qed.

End a.

Definition merge_add_vlabelL (G H: graph2) x a l i o :
   point (merge_seq (G[tst x <- a] H) l) (\pi i) (\pi o)
≃2 point (merge_seq (G H) l) (\pi i) (\pi o) [tst \pi inl x <- a].
Proof.
  eapply iso2_comp.
  apply (iso_iso2' (h:=merge_iso (union_add_vlabel_l _ _ _) _)).
  1,2: rewrite merge_isoE//.
  eapply iso2_comp.
  refine (iso_iso2' (h:=merge_add_vlabel _ _ _) _ _).
  1,2: by rewrite merge_add_vlabelE.
  unshelve refine (iso_iso2' (h:=add_vlabel_iso'' (h:=mgraph.merge_same _) _ _) _ _)=>/=.
  3: reflexivity.
  by rewrite map_pairs_id.
  all: by rewrite merge_sameE.
  (* this proof could be made simpler since we don't need to Defined it *)
Qed.

Lemma 6.3

Lemma merge_step (G' G H: graph2) (l : pairs (G+H)) :
  admissible_l l -> step G G' ->
  steps (point (merge_seq (G H) l) (\pi (unl input)) (\pi (unr output)))
        (point (merge_seq (G' H) (replace_ioL l)) (\pi (unl input)) (\pi (unr output))).
Proof.
  move => A B. destruct B.
  - refine (cons_iso_steps _ (merge_add_vertexL A)).
    apply (one_step (step_v0 _ _)).

  - refine (cons_iso_steps _ (merge_add_edgeL _ _ _)).
    refine (cons_iso_steps _ (add_edge2_iso (merge_add_vertexL A) _ _ _)).
    rewrite 2!merge_add_vertexLE.
    refine (cons_step_steps _ (step_v1 _ _ _)).
    apply iso_step.
    symmetry. apply merge_add_vlabelL.

  - refine (cons_iso_steps _ (merge_add_edgeL _ _ _)).
    refine (cons_iso_steps _ (add_edge2_iso (merge_add_edgeL _ _ _) _ _ _)).
    rewrite !merge_add_edgeLE.
    refine (cons_iso_steps _ (add_edge2_iso (add_edge2_iso (merge_add_vertexL A) _ _ _) _ _ _)).
    do 4 rewrite {1}merge_add_vertexLE.
    refine (cons_step_steps _ (step_v2 _ _ _ _ _)).
    apply iso_step.
    symmetry. apply merge_add_edgeL.

  - refine (cons_iso_steps _ (merge_add_edgeL _ _ _)).
    refine (cons_step_steps _ (step_e0 _ _)).
    apply iso_step.
    etransitivity. symmetry. apply merge_add_vlabelL.
    by rewrite replace_ioE.

  - refine (cons_iso_steps _ (merge_add_edgeL _ _ _)).
    refine (cons_iso_steps _ (add_edge2_iso (merge_add_edgeL _ _ _) _ _ _)).
    rewrite !merge_add_edgeLE.
    refine (cons_step_steps _ (step_e2 _ _ _ _)).
    apply iso_step.
    etransitivity. symmetry. apply (merge_add_edgeL (u:=uv)).
    by rewrite replace_ioE.
Qed.

Lemma step_IO G G': step G G' -> (input == output :> G) = (input == output :> G').
Proof. by case. Qed.

Lemma step_to_steps f:
  Proper (eqv ==> eqv) f -> Proper (step ==> steps) f -> Proper (steps ==> steps) f.
Proof.
  intros If Sf G G' S.
  induction S as [G G' I|G G' F H' I S Ss IH].
  - by apply isop_step, If.
  - etransitivity. apply isop_step, If. exists. apply I.
    etransitivity. apply Sf, S. apply IH.
Qed.

Lemma 6.2


Instance cnv_steps: Proper (steps ==> steps) (cnv : graph2 -> graph2).
Proof.
  apply: step_to_steps.
  move=>F G S. eapply one_step. destruct S.
  * apply (@step_v0 _ (point G output input) alpha).
  * apply (@step_v1 _ (point G output input) x u alpha).
  * apply (@step_v2 _ (point G output input) x y u alpha v).
  * apply (@step_e0 _ (point G output input) x u).
  * apply (@step_e2 _ (point G output input) x y u v).
Qed.

Instance dom_steps: Proper (steps ==> steps) (@dom _).
Proof.
  apply: step_to_steps.
  move=>F G S. eapply one_step. destruct S.
  * apply (@step_v0 _ (point G input input) alpha).
  * apply (@step_v1 _ (point G input input) x u alpha).
  * apply (@step_v2 _ (point G input input) x y u alpha v).
  * apply (@step_e0 _ (point G input input) x u).
  * apply (@step_e2 _ (point G input input) x y u v).
Qed.

Lemma dot_steps_l G G' H: steps G G' -> steps (G·H) (G'·H).
Proof.
  apply: (step_to_steps (f:=fun G => G·H)) => {G G'}.
  - move => F G E. exact: dot_eqv.
  - move => G G' GG'. etransitivity. apply (@merge_step G') => //=.
    + rewrite /admissible_l/=. by rewrite !inE eqxx.
    + by rewrite /replace_ioL/= eqxx.
Qed.

Lemma dot_steps_r G G' H: steps G G' -> steps (H·G) (H·G').
Proof.
  move => GG'. rewrite dotcnv. transitivity ((G'°·H°)°).
    by apply cnv_steps, dot_steps_l, cnv_steps.
    by rewrite -dotcnv.
Qed.

Instance dot_steps: Proper (steps ==> steps ==> steps) (@dot _).
Proof.
  repeat intro. by etransitivity; [apply dot_steps_l | apply dot_steps_r].
Qed.

Lemma par_steps_l G G' H: steps G G' -> steps (GH) (G'H).
Proof.
  apply (step_to_steps (f:=fun G => (GH))) => {G G'}.
  - move => G G' I; exact: par_eqv.
  - move => G G' step_G_G'.
    etransitivity. apply: (@merge_step G') => //=.
    + by rewrite /admissible_l/= !inE !eqxx.
    + rewrite /replace_ioL/= !eqxx. case: ifP => [E|//].
      rewrite (step_IO step_G_G') in E.
      by rewrite -[in (inl output,inr input)](eqP E).
Qed.

Lemma par_steps_r G G' H: steps G G' -> steps (HG) (HG').
Proof.
  intro. rewrite parC. etransitivity. apply par_steps_l. eassumption.
  by rewrite parC.
Qed.

Instance par_steps: Proper (steps ==> steps ==> steps) (@par _).
Proof.
  repeat intro. by etransitivity; [apply par_steps_l | apply par_steps_r].
Qed.

End s.

Lemma eqvEcnv (X : pttdom) (x y : X) : x ≡' y <-> x y°.
Proof. done. Qed.

reduction lemma

(* (in the initial pttdom algebra of terms) *)
Section s'.
Variable A: Type.
Notation term := (pttdom.term A).
Notation nterm := (pttdom.nterm A).
Notation test := (test [the pttdom of term]).
Notation tgraph2 := (graph2 test term).
Notation graph := (graph unit (flat A)).
Notation graph2 := (graph2 unit (flat A)).
Notation step := (@step [the pttdom of term]).
Notation steps := (@steps [the pttdom of term]).

graphs of terms and normal terms


(* function g^A from the end of Section 5 *)
Definition graph_of_term: term -> graph2 := pttdom.eval (fun a: flat A => g2_var _ a).

(* function g^T from the end of Section 5 *)
Definition tgraph_of_term: term -> tgraph2 := pttdom.eval (fun a: A => g2_var _ (pttdom.tm_var a)).

Definition tgraph_of_nterm (t: nterm): tgraph2 :=
  match t with
  | nt_test a => unit_graph2 a
  | nt_conn a u b => edge_graph2 a u b
  end.

(* reduction lemma (Proposition 7.2) *)
Proposition reduce (u: term): steps (tgraph_of_term u) (tgraph_of_nterm (nt u)).
Proof.
  induction u=>//=.
  - etransitivity. apply dot_steps; [apply IHu1|apply IHu2].
    case (nt u1)=>[a|a u b];
    case (nt u2)=>[c|c v d]=>/=.
    * apply iso_step.
      etransitivity. apply dot2unit_r. apply add_vlabel2_unit.
    * apply iso_step.
      etransitivity. apply dot2unit_l.
      etransitivity. apply add_vlabel2_edge.
      apply edge_graph2_iso=>//=. by apply: monC.
    * apply iso_step.
      etransitivity. apply dot2unit_r. apply add_vlabel2_edge.
    * etransitivity. apply isop_step.
      2: etransitivity.
      2: apply one_step, (step_v2 (G:=two_graph2 a d) (inl tt) (inr tt) u [elem_of b·elem_of c] v).
      exists. apply: dot_edges.
      apply isop_step. exists.
      apply: (add_edge2_iso' iso2_id).
      by rewrite !dotA.

  - etransitivity. apply par_steps; [apply IHu1|apply IHu2].
    case (nt u1)=>[a|a u b];
    case (nt u2)=>[c|c v d]=>/=.
    * apply isop_step. exists. apply par2unitunit.
    * etransitivity. apply isop_step.
      2: etransitivity.
      2: apply one_step, (step_e0 (G:=unit_graph2 (c⊗(da))%CM) tt v).
      rewrite parC. exists. apply: par2edgeunit.
      apply isop_step. exists.
      etransitivity. apply add_vlabel2_unit. apply unit_graph2_iso.
      exact: reduce_shuffle.
    * etransitivity. apply isop_step.
      2: etransitivity.
      2: apply one_step, (step_e0 (G:=unit_graph2 (a⊗(bc))%CM) tt u).
      exists. apply: par2edgeunit.
      apply isop_step. exists.
      etransitivity. apply add_vlabel2_unit. apply unit_graph2_iso.
      exact: reduce_shuffle.
    * etransitivity. apply isop_step.
      2: etransitivity.
      2: apply one_step, (step_e2 (G:=two_graph2 (ac)%CM (bd)%CM) (inl tt) (inr tt) u v).
      2: reflexivity.
      exists. apply: par_edges.

  - etransitivity. apply cnv_steps, IHu.
    case (nt u)=>[a|a v b]=>//=.
    apply isop_step. exists.
    etransitivity. refine (iso_iso2 (add_edge_rev _ _ _) _ _).
    rewrite eqvEcnv. symmetry. apply cnvI.
    simpl. symmetry. etransitivity. apply: (add_edge2_iso (iso_iso2 (union_C _ _) _ _)).
    reflexivity.

  - etransitivity. apply dom_steps, IHu.
    case (nt u)=>[a|a v b]=>//=.
    etransitivity. apply one_step, (@step_v1 _ (unit_graph2 a) tt v b).
    apply isop_step. exists.
    etransitivity. apply add_vlabel2_unit. apply unit_graph2_iso.
    done. (* reflexivity fails ... *)
Qed.

End s'.