(* Author: Christian Doczkal *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect.
Require Import misc languages nfa two_way.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect.
Require Import misc languages nfa two_way.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Translation from 2NFAs to NFAs for the complement language
Section Vardi.
Variables (char : finType) (M : nfa2 char).
Implicit Types (x y z w v : word char) (U V W : {set M}) (X Y : {set M} * {set M}).
Definition reject_cert x (T : pos x -> {set M}) :=
[/\ nfa2_s M \in T ord1,
[disjoint (nfa2_f M) & (T ord_max)] &
forall i p j q, p \in T i -> step M x (p,i) (q,j) -> q \in T j ].
Definition run_table x (i : pos x) := [set q | connect (step M x) (nfa2_s M, ord1) (q,i)].
Arguments run_table x i : clear implicits.
Lemma sub_run x C (i : pos x) : reject_cert C -> {subset run_table x i <= C i}.
Proof.
case => T1 T2 T3 p. rewrite inE. case/connectP => cs.
elim/last_ind: cs p i => /= [p i _|cs c IH p i]; first by case => -> ->.
rewrite rcons_path last_rcons [last _ _]surjective_pairing => /andP [pth stp] E. subst.
apply: T3 stp. by apply: IH; rewrite -?surjective_pairing.
Qed.
Lemma dfa2Pn x : reflect (exists T, @reject_cert x T) (x \notin nfa2_lang M).
Proof. apply: introP => [H|].
- exists (run_table x) ; split; first by rewrite inE ?connect0.
+ apply/pred0P => q. rewrite !inE. apply: contraNF H => C.
by apply/existsP; exists q.
+ move => i p j q. rewrite !inE => ? S. exact: connect_trans (connect1 S).
- move/negPn => /exists_inP [q Hq1 Hq2] [c C].
have/(sub_run C) H : q \in run_table x ord_max by rewrite inE.
case: C => _ /disjoint_setI0 C _. move: C. move/setP/(_ q). by rewrite !inE Hq1 H.
Qed.
Section Completeness.
Variables (a : char) (U V W : {set M}).
Definition compL := [forall p in U, forall q, (q \in nfa2_transL p) ==> (q \in V)].
Definition compR := [forall p in V, forall q, (q \in nfa2_transR p) ==> (q \in U)].
Definition comp := [forall p in V, forall q,
(((q,L) \in nfa2_trans p a) ==> (q \in U)) && (((q,R) \in nfa2_trans p a) ==> (q \in W))].
End Completeness.
Definition nfa_of :=
{| nfa_s := [set X : {set M} * {set M} | (nfa2_s M \in X.2) & compL X.1 X.2];
nfa_fin := [set X : {set M} * {set M} | [disjoint (nfa2_f M) & X.2] & compR X.1 X.2];
nfa_trans X a Y := (X.2 == Y.1) && comp a X.1 X.2 Y.2 |}.
Lemma nfa_ofP x : reflect (exists T, @reject_cert x T) (x \in nfa_lang nfa_of).
Proof. apply: (iffP nfaP).
- move => [s] [r] [Hp Hr].
pose T (i : pos x) := if i:nat is i'.+1 then (nth s (s::r) i').2 else (nth s (s::r) 0).1.
have T_comp (j : 'I_(size x)) :
comp (tnth (tape x) j) (T (inord j)) (T (inord j.+1)) (T (inord j.+2)).
case: j => /= m Hm. move: (run_trans Hm Hr) => /andP [_].
have -> : (nth s (s :: r) m).1 = T (inord m).
case: m Hm => [|m] Hm; first by rewrite -inord0.
rewrite /T inordK ?ltnS // 2?ltnW //.
move/ltnW : Hm => Hm. by case/andP : (run_trans Hm Hr) => /eqP-> ?.
have -> : (nth s (s :: r) m).2 = T (inord m.+1) by rewrite /T inordK // ltnS ltnW.
have -> // : (nth s r m).2 = T (inord m.+2). by rewrite /T inordK // ltnS.
exists T. split => //.
+ rewrite /T /=. move: Hp. rewrite inE. by case/andP.
+ rewrite /T /= (run_size Hr) -last_nth.
move/run_last : (Hr). rewrite inE. by case/andP.
+ move => i p j q H. rewrite /step /read.
case: (ord2P _) => [/eqP ?|/eqP ?|i' Hi']; subst => //=.
* rewrite [_ == 0]eqn_leq ltn0 !bsimp => /andP [q1 q2].
rewrite /T (eqP q2) /= in H *.
move: Hp. rewrite !inE => /andP [_ /forall_inP /(_ _ H) /forall_inP].
apply. by rewrite !inE eqxx andbT /= in q1.
* rewrite [_ == _.+2](ltn_eqF) // !bsimp eqSS => /andP [q1 q2].
rewrite /T /= (run_size Hr) -[size r]/((size (s :: r)).-1) nth_last in H.
move: (run_last Hr). rewrite inE. rewrite !inE eqxx andbT /= in q1.
move => /andP [_ /forall_inP /(_ p H) /forall_inP /(_ q q1)].
rewrite /T (eqP q2) (run_size Hr). case e : (size r) => [|m] ; first by rewrite (size0nil e).
have Hm : m < size x by rewrite -e (run_size Hr).
rewrite -nth_last e /=. by case/andP: (run_trans Hm Hr) => /eqP ->.
- move: (T_comp i') => /= /forall_inP /(_ p). rewrite Hi' inord_val => /(_ H) /forallP /(_ q).
case/andP => q1 q2.
case/orP; case/andP => Ht e; rewrite ?Ht /= in q1 q2.
-- move: q2. by rewrite /T (eqP e) inordK // -Hi' ?ltnS.
-- move: q1. rewrite -Hi' eqSS in e. by rewrite -(eqP e) -{2}[j]inord_val.
- move => [T] [T1 T2 T3].
set s := (T ord0, T ord1). exists s.
set r := [tuple (T (inord i.+1), T (inord i.+2)) | i < (size x)]. exists r.
have E m : m <= size x -> nth s (s :: r) m = (T (inord m), T (inord m.+1)).
case: m => m; first by rewrite nth0 /= -inord0 -inord1.
move => H. by rewrite [r]lock /= -lock -[m]/(val (Ordinal H)) -tnth_nth tnth_mktuple.
split.
+ rewrite inE /= T1 /=. apply/forall_inP => p /T3 H. apply/forall_inP => q Hq.
apply: H. by rewrite /step /read ord2P0 !inE Hq eqxx.
+ apply: runI.
* by rewrite size_map size_enum_ord.
* rewrite -nth_last [nth _ _ _](_ : _ = nth s (s::r) (size r)); last by case: (tval r).
rewrite size_tuple E // -inord_max inE /= T2 /=.
apply/forall_inP => p /T3 H. apply/forall_inP => q Hq.
apply H. by rewrite /step /read ord2PM !inE Hq inordK // eqxx !bsimp.
* move => i. rewrite unfold_in. rewrite !E //= 1?ltnW // eqxx /=.
apply/forall_inP => p /T3 H. apply/forallP => q.
have Hi : i.+1 = (inord i.+1 : pos x). by rewrite inordK // !ltnS 1?ltnW //.
apply/andP ; split; apply/implyP => Ht; apply H; rewrite /step /read /= (ord2PC Hi) Ht.
- by rewrite !inordK ?eqxx ?bsimp // !(ltn_ord,ltnS,ltnW).
- by rewrite !inordK ?eqxx ?bsimp // !(ltn_ord,ltnS,ltnW).
Qed.
Lemma nfa_of_correct : nfa_lang nfa_of =i [predC (nfa2_lang M) ].
Proof. move => w. rewrite !inE. apply/idP/dfa2Pn; by move/nfa_ofP. Qed.
End Vardi.